Robinson–Schensted–Knuth correspondence in the representation theory of the general linear group over a non-archimedean local field
HTML articles powered by AMS MathViewer
- by Maxim Gurevich and Erez Lapid; with an appendix by Mark Shimozono
- Represent. Theory 25 (2021), 644-678
- DOI: https://doi.org/10.1090/ert/578
- Published electronically: July 28, 2021
- PDF | Request permission
Abstract:
We construct new “standard modules” for the representations of general linear groups over a local non-archimedean field. The construction uses a modified Robinson–Schensted–Knuth correspondence for Zelevinsky’s multisegments.
Typically, the new class categorifies the basis of Doubilet, Rota, and Stein (DRS) for matrix polynomial rings, indexed by bitableaux. Hence, our main result provides a link between the dual canonical basis (coming from quantum groups) and the DRS basis.
References
- Tomoyuki Arakawa and Takeshi Suzuki, Duality between $\mathfrak {s}\mathfrak {l}_n(\textbf {C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288–304. MR 1652134, DOI 10.1006/jabr.1998.7530
- Dan Barbasch and Dan Ciubotaru, Ladder representations of $\textrm {GL}(n,\Bbb Q_p)$, Representations of reductive groups, Progr. Math., vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 117–137. MR 3495794, DOI 10.1007/978-3-319-23443-4_{4}
- Joseph Bernstein, Roman Bezrukavnikov, and David Kazhdan, Deligne-Lusztig duality and wonderful compactification, Selecta Math. (N.S.) 24 (2018), no. 1, 7–20. MR 3769724, DOI 10.1007/s00029-018-0391-5
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math. 174 (1996), no. 2, 295–326. MR 1405590, DOI 10.2140/pjm.1996.174.295
- J. Désarménien, Joseph P. S. Kung, and Gian-Carlo Rota, Invariant theory, Young bitableaux, and combinatorics, Advances in Math. 27 (1978), no. 1, 63–92. MR 485944, DOI 10.1016/0001-8708(78)90077-4
- Peter Doubilet, Gian-Carlo Rota, and Joel Stein, On the foundations of combinatorial theory. IX. Combinatorial methods in invariant theory, Studies in Appl. Math. 53 (1974), 185–216. MR 498650, DOI 10.1002/sapm1974533185
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- Maxim Gurevich, Quantum invariants for decomposition problems in type $A$ rings of representations, J. Combin. Theory Ser. A 180 (2021), Paper No. 105431, 46. MR 4213657, DOI 10.1016/j.jcta.2021.105431
- Maxim Gurevich, Decomposition rules for the ring of representations of non-Archimedean $GL_n$, Int. Math. Res. Not. IMRN 20 (2020), 6815–6855. MR 4172670, DOI 10.1093/imrn/rnz006
- Maxim Gurevich, Simple modules for quiver Hecke algebras and the Robinson-Schensted-Knuth correspondence. arXiv:2106.03120, 2021.
- Anthony Henderson, Nilpotent orbits of linear and cyclic quivers and Kazhdan-Lusztig polynomials of type A, Represent. Theory 11 (2007), 95–121. MR 2320806, DOI 10.1090/S1088-4165-07-00317-2
- Donald E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709–727. MR 272654, DOI 10.2140/pjm.1970.34.709
- Arno Kret and Erez Lapid, Jacquet modules of ladder representations, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 937–940 (English, with English and French summaries). MR 2996769, DOI 10.1016/j.crma.2012.10.014
- Erez Lapid and Alberto Mínguez, On a determinantal formula of Tadić, Amer. J. Math. 136 (2014), no. 1, 111–142. MR 3163355, DOI 10.1353/ajm.2014.0006
- Erez Lapid and Alberto Mínguez, On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), no. 4, 2347–2400. MR 3573961, DOI 10.1007/s00029-016-0281-7
- Erez Lapid and Alberto Mínguez, Geometric conditions for $\square$-irreducibility of certain representations of the general linear group over a non-archimedean local field, Adv. Math. 339 (2018), 113–190. MR 3866895, DOI 10.1016/j.aim.2018.09.027
- Alain Lascoux and Marcel-P. Schützenberger, Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) Quad. “Ricerca Sci.”, vol. 109, CNR, Rome, 1981, pp. 129–156 (French, with Italian summary). MR 646486
- Bernard Leclerc, Maxim Nazarov, and Jean-Yves Thibon, Induced representations of affine Hecke algebras and canonical bases of quantum groups, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 115–153. MR 1985725
- Bernard Leclerc and Jean-Yves Thibon, The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at $q=0$, Electron. J. Combin. 3 (1996), no. 2, Research Paper 11, approx. 24. The Foata Festschrift. MR 1392496, DOI 10.37236/1269
- C. Mœglin and J.-L. Waldspurger, Sur l’involution de Zelevinski, J. Reine Angew. Math. 372 (1986), 136–177 (French). MR 863522, DOI 10.1515/crll.1986.372.136
- Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR 1324004, DOI 10.1016/0097-3165(95)90083-7
- Daniele Rosso, Classic and mirabolic Robinson-Schensted-Knuth correspondence for partial flags, Canad. J. Math. 64 (2012), no. 5, 1090–1121. MR 2979579, DOI 10.4153/CJM-2011-071-7
- Bruce E. Sagan and Richard P. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55 (1990), no. 2, 161–193. MR 1075706, DOI 10.1016/0097-3165(90)90066-6
- Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97–191. MR 1471867, DOI 10.1007/BF02699536
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Robert Steinberg, An occurrence of the Robinson-Schensted correspondence, J. Algebra 113 (1988), no. 2, 523–528. MR 929778, DOI 10.1016/0021-8693(88)90177-9
- Richard G. Swan, On the straightening law for minors of a matrix. arXiv:1605.06696, 2016.
- G. Viennot, Une forme géométrique de la correspondance de Robinson-Schensted, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) Lecture Notes in Math., Vol. 579, Springer, Berlin, 1977, pp. 29–58 (French). MR 0470059
- A. V. Zelevinskiĭ, The $p$-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen. 15 (1981), no. 2, 9–21, 96 (Russian). MR 617466
- A. V. Zelevinskiĭ, Two remarks on graded nilpotent classes, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 199–200 (Russian). MR 783619
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Maxim Gurevich
- Affiliation: Department of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel
- MR Author ID: 1200700
- ORCID: 0000-0003-4693-0556
- Email: maxg@technion.ac.il
- Erez Lapid
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
- MR Author ID: 631395
- ORCID: 0000-0001-7204-6452
- Email: erez.m.lapid@gmail.com
- Mark Shimozono
- MR Author ID: 361111
- Email: mshimo@math.vt.edu.
- Received by editor(s): June 18, 2020
- Received by editor(s) in revised form: October 8, 2020, and May 4, 2021
- Published electronically: July 28, 2021
- Additional Notes: The first author was partially supported by the Israel Science Foundation (grant No. 737/20)
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 644-678
- MSC (2020): Primary 05E10, 22E50
- DOI: https://doi.org/10.1090/ert/578
- MathSciNet review: 4293086