Parametrizing torsion pairs in derived categories
HTML articles powered by AMS MathViewer
- by Lidia Angeleri Hügel and Michal Hrbek
- Represent. Theory 25 (2021), 679-731
- DOI: https://doi.org/10.1090/ert/579
- Published electronically: July 30, 2021
- PDF | Request permission
Abstract:
We investigate parametrizations of compactly generated t-structures, or more generally, t-structures with a definable coaisle, in the unbounded derived category $\mathrm {D}({\mathrm {Mod}}\text {-}A)$ of a ring $A$. To this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms starting in $A$, which is a natural extension of the construction of compactly generated t-structures from chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide constructions of silting and cosilting objects in $\mathrm {D}({\mathrm {Mod}}\text {-}A)$. This leads us to classification results over some classes of commutative rings and over finite dimensional hereditary algebras.References
- Takahide Adachi, Osamu Iyama, and Idun Reiten, $\tau$-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452. MR 3187626, DOI 10.1112/S0010437X13007422
- Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802, DOI 10.1112/jlms/jdr055
- Leovigildo Alonso Tarrío, Ana Jeremías López, and Manuel Saorín, Compactly generated $t$-structures on the derived category of a Noetherian ring, J. Algebra 324 (2010), no. 3, 313–346. MR 2651339, DOI 10.1016/j.jalgebra.2010.04.023
- Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Localization in categories of complexes and unbounded resolutions, Canad. J. Math. 52 (2000), no. 2, 225–247. MR 1755776, DOI 10.4153/CJM-2000-010-4
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- Lidia Angeleri Hügel, On the abundance of silting modules, Surveys in representation theory of algebras, Contemp. Math., vol. 716, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 1–23. MR 3852397, DOI 10.1090/conm/716/14424
- Lidia Angeleri Hügel, Silting objects, Bull. Lond. Math. Soc. 51 (2019), no. 4, 658–690. MR 3990384, DOI 10.1112/blms.12264
- Lidia Angeleri Hügel and Maria Archetti, Tilting modules and universal localization, Forum Math. 24 (2012), no. 4, 709–731. MR 2949120, DOI 10.1515/form.2011.080
- Lidia Angeleri Hügel and Dolors Herbera, Mittag-Leffler conditions on modules, Indiana Univ. Math. J. 57 (2008), no. 5, 2459–2517. MR 2463975, DOI 10.1512/iumj.2008.57.3325
- Lidia Angeleri Hügel, Dolors Herbera, and Jan Trlifaj, Divisible modules and localization, J. Algebra 294 (2005), no. 2, 519–551. MR 2183363, DOI 10.1016/j.jalgebra.2005.03.019
- Lidia Angeleri Hügel and Michal Hrbek, Silting modules over commutative rings, Int. Math. Res. Not. IMRN 13 (2017), 4131–4151. MR 3671512, DOI 10.1093/imrn/rnw147
- Lidia Angeleri Hügel, Steffen Koenig, and Qunhua Liu, Recollements and tilting objects, J. Pure Appl. Algebra 215 (2011), no. 4, 420–438. MR 2738361, DOI 10.1016/j.jpaa.2010.04.027
- Lidia Angeleri Hügel, Frederik Marks, and Jorge Vitória, Silting modules, Int. Math. Res. Not. IMRN 4 (2016), 1251–1284. MR 3493448, DOI 10.1093/imrn/rnv191
- Lidia Angeleri Hügel, Frederik Marks, and Jorge Vitória, Silting modules and ring epimorphisms, Adv. Math. 303 (2016), 1044–1076. MR 3552543, DOI 10.1016/j.aim.2016.08.035
- Lidia Angeleri Hügel, Frederik Marks, and Jorge Vitória, A characterisation of $\tau$-tilting finite algebras, Model theory of modules, algebras and categories, Contemp. Math., vol. 730, Amer. Math. Soc., [Providence], RI, [2019] ©2019, pp. 75–89. MR 3959610, DOI 10.1090/conm/730/14711
- Lidia Angeleri Hügel, Frederik Marks, Jan Šťovíček, Ryo Takahashi, and Jorge Vitória, Flat ring epimorphisms and universal localizations of commutative rings, Q. J. Math. 71 (2020), no. 4, 1489–1520. MR 4186526, DOI 10.1093/qmath/haaa041
- Lidia Angeleri Hügel and Manuel Saorín, t-Structures and cotilting modules over commutative noetherian rings, Math. Z. 277 (2014), no. 3-4, 847–866. MR 3229968, DOI 10.1007/s00209-014-1281-y
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- Silvana Bazzoni, Cotilting modules and homological ring epimorphisms, J. Algebra 441 (2015), 552–581. MR 3391937, DOI 10.1016/j.jalgebra.2015.07.008
- Silvana Bazzoni and Michal Hrbek, Definable coaisles over rings of weak global dimension at most one, Publ. Mat. 65 (2021), no. 1, 165–241. MR 4185831, DOI 10.5565/PUBLMAT6512106
- Silvana Bazzoni and Leonid Positselski, Matlis category equivalences for a ring epimorphism, J. Pure Appl. Algebra 224 (2020), no. 10, 106398, 25. MR 4093083, DOI 10.1016/j.jpaa.2020.106398
- Silvana Bazzoni and Jan Št’ovíček, Smashing localizations of rings of weak global dimension at most one, Adv. Math. 305 (2017), 351–401. MR 3570139, DOI 10.1016/j.aim.2016.09.028
- Apostolos Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), no. 1, 268–361. MR 1754234, DOI 10.1006/jabr.1999.8237
- George M. Bergman and Warren Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978), no. 2, 293–337. MR 531320, DOI 10.2140/pjm.1978.79.293
- Simion Breaz and Flaviu Pop, Cosilting modules, Algebr. Represent. Theory 20 (2017), no. 5, 1305–1321. MR 3707917, DOI 10.1007/s10468-017-9688-x
- Lars Winther Christensen and Henrik Holm, The direct limit closure of perfect complexes, J. Pure Appl. Algebra 219 (2015), no. 3, 449–463. MR 3279365, DOI 10.1016/j.jpaa.2014.05.004
- P. M. Cohn, Free ideal rings and localization in general rings, New Mathematical Monographs, vol. 3, Cambridge University Press, Cambridge, 2006. MR 2246388, DOI 10.1017/CBO9780511542794
- Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, DOI 10.1016/0021-8693(91)90107-J
- P. Gabriel and J. A. de la Peña, Quotients of representation-finite algebras, Comm. Algebra 15 (1987), no. 1-2, 279–307. MR 876981, DOI 10.1080/00927878708823421
- Grigory Garkusha and Mike Prest, Triangulated categories and the Ziegler spectrum, Algebr. Represent. Theory 8 (2005), no. 4, 499–523. MR 2199207, DOI 10.1007/s10468-005-8147-2
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006. MR 2251271, DOI 10.1515/9783110199727
- Moritz Groth, Derivators, pointed derivators and stable derivators, Algebr. Geom. Topol. 13 (2013), no. 1, 313–374. MR 3031644, DOI 10.2140/agt.2013.13.313
- Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, DOI 10.1090/memo/0575
- Michal Hrbek, Compactly generated t-structures in the derived category of a commutative ring, Math. Z. 295 (2020), no. 1-2, 47–72. MR 4100014, DOI 10.1007/s00209-019-02349-y
- Michal Hrbek and Tsutomu Nakamura, Telescope conjecture for homotopically smashing t-structures over commutative noetherian rings, J. Pure Appl. Algebra 225 (2021), no. 4, Paper No. 106571, 13. MR 4151590, DOI 10.1016/j.jpaa.2020.106571
- Irving Kaplansky, The homological dimension of a quotient field, Nagoya Math. J. 27 (1966), 139–142. MR 194454, DOI 10.1017/S0027763000011946
- Henning Krause, Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math. 139 (2000), no. 1, 99–133. MR 1728877, DOI 10.1007/s002229900022
- Henning Krause, Coherent functors in stable homotopy theory, Fund. Math. 173 (2002), no. 1, 33–56. MR 1899046, DOI 10.4064/fm173-1-3
- Henning Krause, Derived categories, resolutions, and Brown representability, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 101–139. MR 2355771, DOI 10.1090/conm/436/08405
- Henning Krause, Thick subcategories of modules over commutative Noetherian rings (with an appendix by Srikanth Iyengar), Math. Ann. 340 (2008), no. 4, 733–747. MR 2372735, DOI 10.1007/s00208-007-0166-3
- Henning Krause and Jan Šťovíček, The telescope conjecture for hereditary rings via Ext-orthogonal pairs, Adv. Math. 225 (2010), no. 5, 2341–2364. MR 2680168, DOI 10.1016/j.aim.2010.04.027
- Rosanna Laking, Purity in compactly generated derivators and t-structures with Grothendieck hearts, Math. Z. 295 (2020), no. 3-4, 1615–1641. MR 4125704, DOI 10.1007/s00209-019-02411-9
- Rosanna Laking and Jorge Vitória, Definability and approximations in triangulated categories, Pacific J. Math. 306 (2020), no. 2, 557–586. MR 4129412, DOI 10.2140/pjm.2020.306.557
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- Frederik Marks and Jorge Vitória, Silting and cosilting classes in derived categories, J. Algebra 501 (2018), 526–544. MR 3768148, DOI 10.1016/j.jalgebra.2017.12.031
- Amnon Neeman, The chromatic tower for $D(R)$, Topology 31 (1992), no. 3, 519–532. With an appendix by Marcel Bökstedt. MR 1174255, DOI 10.1016/0040-9383(92)90047-L
- Amnon Neeman, Some adjoints in homotopy categories, Ann. of Math. (2) 171 (2010), no. 3, 2143–2155. MR 2680406, DOI 10.4007/annals.2010.171.2143
- Pedro Nicolás and Manuel Saorín, Parametrizing recollement data for triangulated categories, J. Algebra 322 (2009), no. 4, 1220–1250. MR 2537682, DOI 10.1016/j.jalgebra.2009.04.035
- Mike Prest, Purity, spectra and localisation, Encyclopedia of Mathematics and its Applications, vol. 121, Cambridge University Press, Cambridge, 2009. MR 2530988, DOI 10.1017/CBO9781139644242
- Chrysostomos Psaroudakis and Jorge Vitória, Realisation functors in tilting theory, Math. Z. 288 (2018), no. 3-4, 965–1028. MR 3778987, DOI 10.1007/s00209-017-1923-y
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI 10.1007/BF01390094
- Idun Reiten and Claus Michael Ringel, Infinite dimensional representations of canonical algebras, Canad. J. Math. 58 (2006), no. 1, 180–224. MR 2195596, DOI 10.4153/CJM-2006-008-1
- Claus Michael Ringel, A construction of endofinite modules, Advances in algebra and model theory (Essen, 1994; Dresden, 1995) Algebra Logic Appl., vol. 9, Gordon and Breach, Amsterdam, 1997, pp. 387–399. MR 1683560
- M. Saorín, J. Šťovíček, and S. Virili, t-Structures on stable derivators and Grothendieck hearts, preprint, arXiv:1708.07540, 2017.
- A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853, DOI 10.1017/CBO9780511661914
- A. H. Schofield, Severe right Ore sets and universal localisation, preprint, arXiv:0708.0246, 2007.
- A. H. Schofield, Universal localisations of hereditary rings, preprint, arXiv:0708.0257, 2007.
- N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
- Donald Stanley and Adam-Christiaan van Roosmalen, $t$-structures on hereditary categories, Math. Z. 293 (2019), no. 1-2, 731–766. MR 4002298, DOI 10.1007/s00209-018-2190-2
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953, DOI 10.1007/978-3-642-66066-5
- Jan Šťovíček and David Pospíšil, On compactly generated torsion pairs and the classification of co-$t$-structures for commutative noetherian rings, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6325–6361. MR 3461036, DOI 10.1090/tran/6561
Bibliographic Information
- Lidia Angeleri Hügel
- Affiliation: Dipartimento di Informatica - Settore di Matematica, Università degli Studi di Verona, Strada le Grazie 15 - Ca’ Vignal, I-37134 Verona, Italy
- MR Author ID: 358523
- ORCID: 0000-0002-9283-1260
- Email: lidia.angeleri@univr.it
- Michal Hrbek
- Affiliation: Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague, Czech Republic
- MR Author ID: 1048669
- ORCID: 0000-0001-7457-5112
- Email: hrbek@math.cas.cz
- Received by editor(s): June 26, 2020
- Received by editor(s) in revised form: January 15, 2021
- Published electronically: July 30, 2021
- Additional Notes: The first author was partially supported by Istituto Nazionale di Alta Matematica INdAM-GNSAGA. The second author was supported by the Czech Academy of Sciences Programme for research and mobility support of starting researchers, project MSM100191801
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory 25 (2021), 679-731
- MSC (2020): Primary 18G80, 18E40, 16S85; Secondary 16E60, 16G20, 13C05
- DOI: https://doi.org/10.1090/ert/579
- MathSciNet review: 4293772