Invariant measures on nilpotent orbits associated with holomorphic discrete series
Author:
Mladen Božičević
Journal:
Represent. Theory 25 (2021), 732-747
MSC (2020):
Primary 22E46; Secondary 22E30
DOI:
https://doi.org/10.1090/ert/580
Published electronically:
August 18, 2021
MathSciNet review:
4301562
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $G_\mathbb R$ be a real form of a complex, semisimple Lie group $G$. Assume $G_\mathbb R$ has holomorphic discrete series. Let $\mathcal W$ be a nilpotent coadjoint $G_\mathbb R$-orbit contained in the wave front set of a holomorphic discrete series. We prove a limit formula, expressing the canonical measure on $\mathcal W$ as a limit of canonical measures on semisimple coadjoint orbits, where the parameter of orbits varies over the positive chamber defined by the Borel subalgebra associated with holomorphic discrete series.
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207 (French). MR 51508, DOI 10.2307/1969728
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
- Mladen Božičević, A limit formula for elliptic orbital integrals, Duke Math. J. 113 (2002), no. 2, 331–353. MR 1909221, DOI 10.1215/S0012-7094-02-11325-8
- Mladen Božičević, Characteristic cycles of standard sheaves associated with open orbits, Proc. Amer. Math. Soc. 136 (2008), no. 1, 367–371. MR 2350425, DOI 10.1090/S0002-9939-07-08986-1
- Mladen Božičević, Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1213–1232 (English, with English and French summaries). MR 2427959, DOI 10.5802/aif.2383
- Mladen Božičević, Homology groups of conormal varieties, Mediterr. J. Math. 4 (2007), no. 4, 407–418. MR 2369235, DOI 10.1007/s00009-007-0126-x
- Jen-Tseh Chang, Characteristic cycles of holomorphic discrete series, Trans. Amer. Math. Soc. 334 (1992), no. 1, 213–227. MR 1087052, DOI 10.1090/S0002-9947-1992-1087052-3
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Toshihiko Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), no. 2, 331–357. MR 527548, DOI 10.2969/jmsj/03120331
- D. Miličić, Localization and representation theory of reductive Lie groups, Preliminary manuscript, 1993.
- I. Mirković, T. Uzawa, and K. Vilonen, Matsuki correspondence for sheaves, Invent. Math. 109 (1992), no. 2, 231–245. MR 1172690, DOI 10.1007/BF01232026
- W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of Weyl groups, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 263–287. MR 1103593
- W. Rossmann, Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math. 121 (1995), no. 3, 531–578. MR 1353308, DOI 10.1007/BF01884311
- W. Rossmann, Picard-Lefschetz theory and characters of a semisimple Lie group, Invent. Math. 121 (1995), no. 3, 579–611. MR 1353309, DOI 10.1007/BF01884312
- Wilfried Schmid and Kari Vilonen, Characteristic cycles of constructible sheaves, Invent. Math. 124 (1996), no. 1-3, 451–502. MR 1369425, DOI 10.1007/s002220050060
- Wilfried Schmid and Kari Vilonen, Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc. 11 (1998), no. 4, 799–867. MR 1612634, DOI 10.1090/S0894-0347-98-00275-6
- Wilfried Schmid and Kari Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. (2) 151 (2000), no. 3, 1071–1118. MR 1779564, DOI 10.2307/121129
- Jir\B{o} Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), no. 1, 127–138. MR 867991, DOI 10.2969/jmsj/03910127
- Hiroshi Yamashita, Cayley transform and generalized Whittaker models for irreducible highest weight modules, Astérisque 273 (2001), 81–137 (English, with English and French summaries). Nilpotent orbits, associated cycles and Whittaker models for highest weight representations. MR 1845715
Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 22E46, 22E30
Retrieve articles in all journals with MSC (2020): 22E46, 22E30
Additional Information
Mladen Božičević
Affiliation:
Department of Geotechnical Engineering, University of Zagreb, Hallerova 7, 42000 Varaždin, Croatia
ORCID:
0000-0002-2588-723X
Email:
mladen.bozicevic@gmail.com
Received by editor(s):
January 26, 2021
Received by editor(s) in revised form:
May 25, 2021
Published electronically:
August 18, 2021
Additional Notes:
The author was partially supported by grant no. 4176 of the Croatian Science Foundation
Article copyright:
© Copyright 2021
American Mathematical Society