## The Dipper-Du conjecture revisited

HTML articles powered by AMS MathViewer

- by Emily Norton PDF
- Represent. Theory
**25**(2021), 748-759 Request permission

## Abstract:

We consider vertices, a notion originating in local representation theory of finite groups, for the category $\mathcal {O}$ of a rational Cherednik algebra and prove the analogue of the Dipper-Du Conjecture for Hecke algebras of symmetric groups in that setting. As a corollary we obtain a new proof of the Dipper-Du Conjecture over $\mathbb {C}$.## References

- J. L. Alperin,
*Local representation theory*, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. MR**860771**, DOI 10.1017/CBO9780511623592 - Yuri Berest, Pavel Etingof, and Victor Ginzburg,
*Finite-dimensional representations of rational Cherednik algebras*, Int. Math. Res. Not.**19**(2003), 1053–1088. MR**1961261**, DOI 10.1155/S1073792803210205 - Roman Bezrukavnikov and Pavel Etingof,
*Parabolic induction and restriction functors for rational Cherednik algebras*, Selecta Math. (N.S.)**14**(2009), no. 3-4, 397–425. MR**2511190**, DOI 10.1007/s00029-009-0507-z - Michel Broué,
*Higman’s criterion revisited*, Michigan Math. J.**58**(2009), no. 1, 125–179. MR**2526081**, DOI 10.1307/mmj/1242071686 - E. Cline, B. Parshall, and L. Scott,
*Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math.**391**(1988), 85–99. MR**961165** - Richard Dipper and Jie Du,
*Trivial and alternating source modules of Hecke algebras of type $A$*, Proc. London Math. Soc. (3)**66**(1993), no. 3, 479–506. MR**1207545**, DOI 10.1112/plms/s3-66.3.479 - Jie Du,
*The Green correspondence for the representations of Hecke algebras of type $A_{r-1}$*, Trans. Amer. Math. Soc.**329**(1992), no. 1, 273–287. MR**1022164**, DOI 10.1090/S0002-9947-1992-1022164-1 - Olivier Dudas and Jean Michel,
*Lectures on finite reductive groups and their representations*, (2015), http://webusers.imj-prg.fr/~jean.michel/papiers/lectures_beijing_2015.pdf - Richard Dipper and Gordon James,
*Blocks and idempotents of Hecke algebras of general linear groups*, Proc. London Math. Soc. (3)**54**(1987), no. 1, 57–82. MR**872250**, DOI 10.1112/plms/s3-54.1.57 - Meinolf Geck and Nicolas Jacon,
*Representations of Hecke algebras at roots of unity*, Algebra and Applications, vol. 15, Springer-Verlag London, Ltd., London, 2011. MR**2799052**, DOI 10.1007/978-0-85729-716-7 - Meinolf Geck and Götz Pfeiffer,
*Characters of finite Coxeter groups and Iwahori-Hecke algebras*, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR**1778802** - Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier,
*On the category $\scr O$ for rational Cherednik algebras*, Invent. Math.**154**(2003), no. 3, 617–651. MR**2018786**, DOI 10.1007/s00222-003-0313-8 - Stephen Griffeth and Daniel Juteau,
*$W$-exponentials, Schur elements, and the support of the spherical representation of the rational Cherednik algebra*, Ann. Sci. Éc. Norm. Supér. (4)**53**(2020), no. 5, 1335–1362 (English, with English and French summaries). MR**4174848**, DOI 10.24033/asens.2448 - Gordon James and Adalbert Kerber,
*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144** - Toshiro Kuwabara, Hyohe Miyachi and Kentaro Wada. On the Mackey formula for cyclotomic Hecke algebras and categories $\mathcal {O}$ of rational Cherednik algebras. arXiv:1801.03761, 2018.
- Markus Linckelmann,
*The block theory of finite group algebras. Vol. I*, London Mathematical Society Student Texts, vol. 91, Cambridge University Press, Cambridge, 2018. MR**3821516** - Ivan Losev,
*On isomorphisms of certain functors for Cherednik algebras*, Represent. Theory**17**(2013), 247–262. MR**3054265**, DOI 10.1090/S1088-4165-2013-00437-5 - Ivan Losev,
*Finite-dimensional quotients of Hecke algebras*, Algebra Number Theory**9**(2015), no. 2, 493–502. MR**3320850**, DOI 10.2140/ant.2015.9.493 - Ivan Losev and Seth Shelley-Abrahamson,
*On refined filtration by supports for rational Cherednik categories $\mathcal {O}$*, Selecta Math. (N.S.)**24**(2018), no. 2, 1729–1804. MR**3782434**, DOI 10.1007/s00029-018-0390-6 - Saunders MacLane,
*Categories for the working mathematician*, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR**0354798** - Raphaël Rouquier,
*$q$-Schur algebras and complex reflection groups*, Mosc. Math. J.**8**(2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR**2422270**, DOI 10.17323/1609-4514-2008-8-1-119-158 - Peng Shan,
*Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras*, Ann. Sci. Éc. Norm. Supér. (4)**44**(2011), no. 1, 147–182 (English, with English and French summaries). MR**2760196**, DOI 10.24033/asens.2141 - P. Shan and E. Vasserot,
*Heisenberg algebras and rational double affine Hecke algebras*, J. Amer. Math. Soc.**25**(2012), no. 4, 959–1031. MR**2947944**, DOI 10.1090/S0894-0347-2012-00738-3 - James R. Whitley,
*Vertices for Iwahori-Hecke algebras and the Dipper-Du conjecture*, Proc. Lond. Math. Soc. (3)**119**(2019), no. 2, 379–408. MR**3959048**, DOI 10.1112/plms.12230 - Stewart Wilcox,
*Supports of representations of the rational Cherednik algebra of type A*, Adv. Math.**314**(2017), 426–492. MR**3658722**, DOI 10.1016/j.aim.2017.04.031

## Additional Information

**Emily Norton**- Affiliation: Department of Mathematics, TU Kaiserslautern, Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern Germany
- MR Author ID: 1204269
- Email: norton@mathematik.uni-kl.de
- Received by editor(s): December 13, 2019
- Received by editor(s) in revised form: March 10, 2021
- Published electronically: September 3, 2021
- Additional Notes: The author was supported financially by MPIM Bonn at the time of writing
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory
**25**(2021), 748-759 - MSC (2020): Primary 16G99, 20C08, 20C30
- DOI: https://doi.org/10.1090/ert/581
- MathSciNet review: 4308821