## Unipotent representations attached to the principal nilpotent orbit

HTML articles powered by AMS MathViewer

- by Lucas Mason-Brown
- Represent. Theory
**25**(2021), 844-860 - DOI: https://doi.org/10.1090/ert/586
- Published electronically: October 7, 2021
- PDF | Request permission

## Abstract:

In this paper, we construct and classify the special unipotent representations of a real reductive group attached to the principal nilpotent orbit. We give formulas for the $\mathbf {K}$-types, associated varieties, and Langlands parameters of all such representations.## References

- Jeffrey Adams, Dan Barbasch, and David A. Vogan Jr.,
*The Langlands classification and irreducible characters for real reductive groups*, Progress in Mathematics, vol. 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR**1162533**, DOI 10.1007/978-1-4612-0383-4 - Jeffrey D. Adams, Marc A. A. van Leeuwen, Peter E. Trapa, and David A. Vogan Jr.,
*Unitary representations of real reductive groups*, Astérisque**417**(2020), x + 174 (English, with English and French summaries). MR**4146144**, DOI 10.24033/ast - Jeffrey Adams and David A. Vogan Jr.,
*$L$-groups, projective representations, and the Langlands classification*, Amer. J. Math.**114**(1992), no. 1, 45–138. MR**1147719**, DOI 10.2307/2374739 - Jeffrey Adams and David A. Vogan Jr.,
*Parameters for twisted representations*, Representations of reductive groups, Progr. Math., vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 51–116. MR**3495793**, DOI 10.1007/978-3-319-23443-4_{3} - J. Adams and D. Vogan.
*Associated varieties for real reductive groups*, arXiv:2103.1183, 2021. - James Arthur,
*On some problems suggested by the trace formula*, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 1–49. MR**748504**, DOI 10.1007/BFb0073144 - James Arthur,
*Unipotent automorphic representations: conjectures*, Astérisque**171-172**(1989), 13–71. Orbites unipotentes et représentations, II. MR**1021499** - Dan Barbasch and David A. Vogan Jr.,
*Unipotent representations of complex semisimple groups*, Ann. of Math. (2)**121**(1985), no. 1, 41–110. MR**782556**, DOI 10.2307/1971193 - A. Borel,
*Automorphic $L$-functions*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR**546608** - Henryk Hecht, Dragan Miličić, Wilfried Schmid, and Joseph A. Wolf,
*Localization and standard modules for real semisimple Lie groups. I. The duality theorem*, Invent. Math.**90**(1987), no. 2, 297–332. MR**910203**, DOI 10.1007/BF01388707 - Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki,
*$D$-modules, perverse sheaves, and representation theory*, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR**2357361**, DOI 10.1007/978-0-8176-4523-6 - Anthony Joseph,
*On the associated variety of a primitive ideal*, J. Algebra**93**(1985), no. 2, 509–523. MR**786766**, DOI 10.1016/0021-8693(85)90172-3 - Anthony W. Knapp and David A. Vogan Jr.,
*Cohomological induction and unitary representations*, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR**1330919**, DOI 10.1515/9781400883936 - Bertram Kostant,
*On the existence and irreducibility of certain series of representations*, Bull. Amer. Math. Soc.**75**(1969), 627–642. MR**245725**, DOI 10.1090/S0002-9904-1969-12235-4 - R. P. Langlands,
*On the classification of irreducible representations of real algebraic groups*, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR**1011897**, DOI 10.1090/surv/031/03 - Wilfried Schmid,
*Two character identities for semisimple Lie groups*, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Lecture Notes in Math., Vol. 587, Springer, Berlin, 1977, pp. 196–225. MR**0507247** - Peter E. Trapa,
*Annihilators and associated varieties of $A_{\mathfrak {q}}(\lambda )$ modules for $\mathrm U(p,q)$*, Compositio Math.**129**(2001), no. 1, 1–45. MR**1856021**, DOI 10.1023/A:1013115223377 - David A. Vogan Jr.,
*Representations of real reductive Lie groups*, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR**632407** - David A. Vogan Jr.,
*Associated varieties and unipotent representations*, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR**1168491** - David A. Vogan Jr.,
*Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality*, Duke Math. J.**49**(1982), no. 4, 943–1073. MR**683010** - Joseph A. Wolf,
*Finiteness of orbit structure for real flag manifolds*, Geometriae Dedicata**3**(1974), 377–384. MR**364689**, DOI 10.1007/BF00181328

## Bibliographic Information

**Lucas Mason-Brown**- Affiliation: Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG England
- Email: lucas.mason-brown@maths.ox.ac.uk
- Received by editor(s): May 26, 2021
- Published electronically: October 7, 2021
- © Copyright 2021 American Mathematical Society
- Journal: Represent. Theory
**25**(2021), 844-860 - MSC (2020): Primary 22E46
- DOI: https://doi.org/10.1090/ert/586
- MathSciNet review: 4322395