Splitting fields of real irreducible representations of finite groups
HTML articles powered by AMS MathViewer
- by Dmitrii V. Pasechnik
- Represent. Theory 25 (2021), 897-902
- DOI: https://doi.org/10.1090/ert/587
- Published electronically: October 14, 2021
Abstract:
We show that any irreducible representation $\rho$ of a finite group $G$ of exponent $n$, realisable over $\mathbb {R}$, is realisable over the field $E≔\mathbb {Q}(\zeta _n)\cap \mathbb {R}$ of real cyclotomic numbers of order $n$, and describe an algorithmic procedure transforming a realisation of $\rho$ over $\mathbb {Q}(\zeta _n)$ to one over $E$.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1962 original. MR 2215618, DOI 10.1090/chel/356
- Vahid Dabbaghian and John D. Dixon, Computing matrix representations, Math. Comp. 79 (2010), no. 271, 1801–1810. MR 2630014, DOI 10.1090/S0025-5718-10-02330-6
- John D. Dixon, Constructing representations of finite groups, Groups and computation (New Brunswick, NJ, 1991) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 11, Amer. Math. Soc., Providence, RI, 1993, pp. 105–112. MR 1235797, DOI 10.1090/dimacs/011/07
- Claus Fieker, Minimizing representations over number fields. II. Computations in the Brauer group, J. Algebra 322 (2009), no. 3, 752–765. MR 2531221, DOI 10.1016/j.jalgebra.2009.05.009
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021.
- S. P. Glasby and R. B. Howlett, Writing representations over minimal fields, Comm. Algebra 25 (1997), no. 6, 1703–1711. MR 1446124, DOI 10.1080/00927879708825947
- Kaashif Hymabaccus and Dmitrii V. Pasechnik, RepnDecomp: A GAP package for decomposing linear representations of finite groups, J. Open Source Softw. 5 (2020), no. 50, 1835–1836.
- I. Martin Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423 (57 #417)]. MR 1280461
- Denis Rosset, Repsn: constructing representations with real coefficients, 2021, GAP-Forum post, https://mail.gap-system.org/pipermail/forum/2021/006240.html.
- Will Sawin, Is every positive real cyclotomic number the norm of a cyclotomic?, MathOverflow, 2021, https://mathoverflow.net/q/391269 (version: 2021-04-27).
- Jean-Pierre Serre, Conducteurs d’Artin des caractères réels, Invent. Math. 14 (1971), 173–183 (French). MR 321908, DOI 10.1007/BF01418887
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380, DOI 10.1007/978-1-4684-9458-7
Bibliographic Information
- Dmitrii V. Pasechnik
- Affiliation: Department of Computer Science, University of Oxford, United Kingdom
- MR Author ID: 292421
- Email: dima@pasechnik.info
- Received by editor(s): July 13, 2021
- Received by editor(s) in revised form: July 15, 2021
- Published electronically: October 14, 2021
- © Copyright 2021 Dmitrii V. Pasechnik
- Journal: Represent. Theory 25 (2021), 897-902
- MSC (2020): Primary 20C15, 20-08
- DOI: https://doi.org/10.1090/ert/587
- MathSciNet review: 4324950