Coordinate rings and birational charts
HTML articles powered by AMS MathViewer
- by Sergey Fomin and George Lusztig
- Represent. Theory 26 (2022), 1-16
- DOI: https://doi.org/10.1090/ert/592
- Published electronically: January 5, 2022
- PDF | Request permission
Abstract:
Let $G$ be a semisimple simply connected complex algebraic group. Let $U$ be the unipotent radical of a Borel subgroup in $G$. We describe the coordinate rings of $U$ (resp., $G/U$, $G$) in terms of two (resp., four, eight) birational charts introduced by Lusztig [Total positivity in reductive groups, Birkhäuser Boston, Boston, MA, 1994; Bull. Inst. Math. Sin. (N.S.) 14 (2019), pp. 403–459] in connection with the study of total positivity.References
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49–149. MR 1405449, DOI 10.1006/aima.1996.0057
- Arkady Berenstein and Andrei Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), no. 1, 128–166. MR 1456321, DOI 10.1007/PL00000363
- N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule XI. Livre II: Algèbre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1102, Hermann, Paris, 1959 (French). Deuxième édition. MR 0174550
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- George Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 133–145. MR 1648700
- G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459. MR 4054343, DOI 10.21915/bimas.2019402
Bibliographic Information
- Sergey Fomin
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 230455
- ORCID: 0000-0002-4714-6141
- Email: fomin@umich.edu
- George Lusztig
- Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Email: gyuri@mit.edu
- Received by editor(s): February 20, 2021
- Received by editor(s) in revised form: October 25, 2021
- Published electronically: January 5, 2022
- Additional Notes: The first author was supported by NSF grants DMS-1664722, DMS-2054231 and by a Simons Fellowship. The second author was supported by DMS-1855773
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 1-16
- MSC (2020): Primary 22E46; Secondary 20G20, 14M15
- DOI: https://doi.org/10.1090/ert/592
- MathSciNet review: 4359428