Coxeter combinatorics for sum formulas in the representation theory of algebraic groups
HTML articles powered by AMS MathViewer
- by Jonathan Gruber
- Represent. Theory 26 (2022), 68-93
- DOI: https://doi.org/10.1090/ert/599
- Published electronically: March 2, 2022
- PDF | Request permission
Abstract:
Let $G$ be a simple algebraic group over an algebraically closed field $\mathbb {F}$ of characteristic $p \geq h$, the Coxeter number of $G$. We observe an easy ‘recursion formula’ for computing the Jantzen sum formula of a Weyl module with $p$-regular highest weight. We also discuss a ‘duality formula’ that relates the Jantzen sum formula to Andersen’s sum formula for tilting filtrations and we give two different representation theoretic explanations of the recursion formula. As a corollary, we also obtain an upper bound on the length of the Jantzen filtration of a Weyl module with $p$-regular highest weight in terms of the length of the Jantzen filtration of a Weyl module with highest weight in an adjacent alcove.References
- H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a $p$th root of unity and of semisimple groups in characteristic $p$: independence of $p$, Astérisque 220 (1994), 321 (English, with English and French summaries). MR 1272539
- Henning Haahr Andersen and Upendra Kulkarni, Sum formulas for reductive algebraic groups, Adv. Math. 217 (2008), no. 1, 419–447. MR 2365202, DOI 10.1016/j.aim.2007.07.002
- Henning Haahr Andersen, Filtrations of cohomology modules for Chevalley groups, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 4, 495–528 (1984). MR 740588, DOI 10.24033/asens.1458
- Henning Haahr Andersen, Jantzen’s filtrations of Weyl modules, Math. Z. 194 (1987), no. 1, 127–142. MR 871225, DOI 10.1007/BF01168012
- Henning Haahr Andersen, Filtrations and tilting modules, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 3, 353–366 (English, with English and French summaries). MR 1443491, DOI 10.1016/S0012-9593(97)89924-7
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Jens C. Jantzen, Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. Reine Angew. Math. 290 (1977), 117–141. MR 432775, DOI 10.1515/crll.1977.290.117
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), no. 2, 335–381. MR 1239506, DOI 10.1090/S0894-0347-1994-1239506-X
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21–62. MR 1317626, DOI 10.1215/S0012-7094-95-07702-3
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Math. J. 84 (1996), no. 3, 771–813. MR 1408544, DOI 10.1215/S0012-7094-96-08424-0
- Upendra Kulkarni, A homological interpretation of Jantzen’s sum formula, Transform. Groups 11 (2006), no. 3, 517–538. MR 2264464, DOI 10.1007/s00031-005-1115-4
- George Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1923, 231–246. MR 1276910, DOI 10.1098/rspa.1994.0058
- S. Riche and G. Williamson, Smith-Treumann theory and the linkage principle, preprint, url: https://arxiv.org/abs/2003.08522, 2020.
- Paul Sobaje, On character formulas for simple and tilting modules, Adv. Math. 369 (2020), 107172, 8. MR 4092982, DOI 10.1016/j.aim.2020.107172
Bibliographic Information
- Jonathan Gruber
- Affiliation: École Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
- MR Author ID: 1425592
- ORCID: 0000-0001-5975-8041
- Email: jonathan.gruber@epfl.ch
- Received by editor(s): July 7, 2021
- Received by editor(s) in revised form: August 20, 2021
- Published electronically: March 2, 2022
- Additional Notes: This work was supported by the Swiss National Science Foundation under grant number FNS 200020_175571.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 68-93
- MSC (2020): Primary 20G05
- DOI: https://doi.org/10.1090/ert/599
- MathSciNet review: 4388551