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LOCALLY ANALYTIC Ext1 FOR GL2(Qp)

IN DE RHAM NON-TRIANGULINE CASE

YIWEN DING

Abstract. We prove Breuil’s conjecture on locally analytic Ext1 for GL2(Qp)
in de Rham non-trianguline case.

1. Introduction

Let E be a finite extension of Qp, RE be the Robba ring with E-coefficients. The
(locally analytic) p-adic local Langlands correspondence for GL2(Qp) associates to
a (ϕ,Γ)-module D of rank 2 over RE a locally analytic representation π(D) of
GL2(Qp) over E (see for example [8, § 0.1]). The representation π(D) determines
D (and vice versa). Indeed, when D is trianguline, this follows from the explicit
structure of π(D) and D. When D is not trianguline, one can reduce to the case
where D is étale hence isomorphic to Drig(ρ) for a certain 2-dimensional represen-
tation ρ of the absolute Galois group GalQp

over E. In this case, by [10, Thm. 0.2],
the universal completion of π(D) is exactly the Banach representation of GL2(Qp)
associated to ρ, which determines ρ (hence D) via Colmez’s Montreal functor (see
[7, Thm. 0.17(iii)]).

The p-adic local Langlands correspondence is compatible with (and refines) the
classical local Langlands correspondence. We recall the feature in more details.
Suppose that D is de Rham of Hodge-Tate weights (0, k) with k ≥ 1 (where we use
the convention that the Hodge-Tate weight of the cyclotomic character is 1). We
can associate to D a smooth GL2(Qp)-representation in the following way:

D ←→ Dpst(D) � DF︸ ︷︷ ︸
p-adic Hodge theory

←→ r ←→ π∞(r)︸ ︷︷ ︸
local Langlands

where

• Dpst(D) is the filtered (ϕ,N,Gal(L/Qp))-module associated to D (cf. [2,
Thm. A]), where L is a certain finite extension of Qp,

• DF is the underlying Deligne-Fontaine module (i.e. (ϕ,N,Gal(L/Qp))-
module) of Dpst(D) (by forgetting the Hodge filtration),

• r is the 2-dimensional Weil-Deligne representation associated to DF as in
[6, § 4],

• π∞(r) := rec−1(r) is the smooth GL2(Qp)-representation associated to r

via the classical local Langlands correspondence (normalized as in [13], in
particular, the central character ωπ∞(r) is ∧2r⊗Eunr(p), where we view the

one-dimensional Weil representation ∧2r as a character of Q×
p via W ab

Qp

∼=
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Q×
p , normalized by sending geometric Frobenius to uniformizers, and where

unr(p) is the unramified character of Q×
p sending uniformizers to p).

Put πalg(r, k) := Symk−1 E2 ⊗E π∞(r), which is a locally algebraic representation
of GL2(Qp) (for the diagonal action). Then there is a natural injection ([12, Thm.
3.3.22]):

πalg(r, k) ↪−→ π(D).

It turns out that the quotient πc(r, k) := π(D)/πalg(r, k) (that is a locally analytic
representation of GL2(Qp) as well) also depends only on and determines {r, k} (see
[9, § 0.2]). One may view the correspondence πc(r, k) ↔ {r, k} as a local Langlands
correspondence for the simple reflection in the Weyl group W ∼= S2 of GL2 (see
[5, Remark 5.3.2(iv)] for related discussions).

We let Δ be the p-adic differential equation associated to D, i.e. the (ϕ,Γ)-
module associated to DF equipped with the trivial Hodge filtration via [2, Thm. A].
By loc. cit., the category of p-adic differential equations is equivalent to the category
of Deligne-Fontaine modules (that is equivalent to the category of Weil-Deligne rep-

resentations). We have natural isomorphisms Dpst(Δ)
∼−→ DF (as Deligne-Fontaine

module), and DdR(Δ)
∼−→ DdR(D) (as E-vector space). The Hodge filtration on

DdR(D) has the following form

(1) Fili DdR(D) =

⎧⎪⎨
⎪⎩
DdR(Δ) i ≤ −k

L(D) −k < i ≤ 0

0 i > 0

,

where L(D) is a certain E-line in DdR(Δ). By [2, Thm. A], D is equivalent to
the data {Δ, k,L(D)} (or equivalently {r, k,L(D)}). And we see when we pass
from D to {r, k}, we lose exactly the information on L(D). To make the notation
more consistent, we write πalg(Δ, k) := πalg(r, k), and πc(Δ, k) := πc(r, k). As
the whole locally analytic GL2(Qp)-representation π(D) can determine D while the
constituents πalg(Δ, k), πc(Δ, k) only determine {Δ, k}, this suggests the informa-
tion on L(D) should be contained in the corresponding extension class (see [4, § 2.1]
for the definition of Ext1GL2(Qp))

[π(D)] ∈ Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
.

In [4], Breuil formulated Conjecture 1.1 in this direction (see [4, Conj. 1.1] for
general GLn-case):

Conjecture 1.1. There is a natural E-linear bijection

(2) Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

) ∼−−→ DdR(Δ)

such that for any de Rham (ϕ,Γ)-module D of rank 2 over RE of Hodge-Tate
weights (0, k) with the associated p-adic differential equation isomorphic to Δ, the
map sends the E-line E[π(D)] to L(D).

The conjecture was proved in the trianguline case (or equivalently, when Δ (or
equivalently r) is reducible) in [4, § 3.1]. The proof relied on a direct calculation
of Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
. Indeed, when D (or equivalently Δ) is trian-

guline, the irreducible constituents of π(D) are among those that appear in locally
analytic principal series, so such a calculation can be carried out. In this note,
we prove the conjecture in de Rham non-trianguline case hence complete all cases.
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In fact, we prove a refined version of the conjecture given in [5, Conj. 5.3.1] (see
Corollary 2.4 and Theorem 2.5), which describes the bijection in Conjecture 1.1 in
a functorial way.

Remark 1.2. When Δ is de Rham non-trianguline, by [9, Thm. 0.6], there is an
injective E-linear map

(3) DdR(Δ) ↪−→ Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
satisfying the same property as (the inverse) of (2). Hence

dimE Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
≥ 2,

and one may prove the conjecture by showing the equality holds. Indeed, by [9,
Thm. 0.6(iii)], one has an extension (which is the universal extension a posteriori,
where π(Δ, k) is the representation Π(M,k) of loc. cit.)

(4) 0 → πalg(Δ, k)⊗E DdR(Δ) → π(Δ, k) → πc(Δ, k) → 0,

satisfying that for any de Rham (ϕ,Γ)-module D of rank 2 over RE of Hodge-
Tate weights (0, k) with the associated p-adic differential equation isomorphic to
Δ, π(D) ∼= π(Δ, k)/(πalg(Δ, k)⊗E L(D)). The extension class [π(Δ, k)] induces via
the natural cup-product

Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)⊗E DdR(Δ)

)
×DdR(Δ)∨

→ Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
an E-linear map

(5) DdR(Δ)∨ −→ Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
sending an E-line L(D)⊥ = (DdR(Δ)/L(D))∨ ↪→ DdR(Δ)∨ to E[π(D)]. Note that
(5) is injective, as for different E-lines L(D1) �= L(D2), we have D1 � D2 hence
π(D1) � π(D2). Let e1, e2 be a basis of DdR(Δ), and e∗i ∈ DdR(Δ)∨ such that

e∗i (ej) =

{
1 i = j

0 i �= j
. We see the E-linear bijective map DdR(Δ)

∼−→ DdR(Δ)∨ given

by e1 �→ e∗2, e2 �→ −e∗1 sends each E-line L to L⊥. This bijection pre-composed
with (5) gives then the injection in (3). Finally, we remark that by [11, Thm. 1.4],
the universal extension (4) can be realized in the de Rham complex of the coverings
of Drinfeld’s upper half-plane.

2. Main results

Before stating our main results, we quickly introduce some more notation. For
r ∈ Q>0, let Rr

E be the Fréchet space of E-coefficient rigid analytic functions on

the annulus p−
1
r ≤ | · | < 1 where | · | is the norm on Cp normalized such that

|p| = p−1. We have RE
∼= lim−→r

Rr
E . Let R+

E be the Fréchet space of E-coefficient

rigid analytic functions on the open unit disk | · | < 1:

R+
E =

{+∞∑
i=0

aiX
i | ai ∈ E for all i, and |ai|ri → 0, i → +∞ for all 0 ≤ r < 1

}
.

We have R+
E ↪→ Rr

E for all r. The Robba ring RE is equipped with a natural
(standard) action of Γ ∼= Z×

p and operators ϕ and ψ. Recall that the Γ-action sends

R+
E (resp. Rr

E) to R+
E (resp. Rr

E), and the ψ-operator sends R+
E (resp. Rr

E) to
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R+
E (resp. Rr

E for r ∈ Q>p−1). Let D be a generalized (ϕ,Γ)-module over RE (cf.
[14, § 4.1], noting D is allowed to have t-torsions, t = log(1 +X)). Recall (see [5,
Remark 2.2.2] and the discussion above it) there exist r ∈ Q>p−1, and a generalized

(ϕ,Γ)-module Dr over Rr
E (cf. loc. cit.) such that fr : Dr ⊗Rr

E
RE

∼−→ D. In fact,

such {r,Dr, fr} form a filtered category I(D), and lim−→(r,fr,Dr)∈I(D)
Dr

∼−→ D (see

the discussion above [5, Remark 2.2.4]).
Recall (see for example [9, § 1.1.2]) that R+

E is naturally isomorphic to the
locally analytic distribution algebra D(Zp, E) = Cla(Zp, E)∨ of Zp. Under this
isomorphism, the operators ϕ, ψ, and γ ∈ Γ can be described as follows: for
μ ∈ D(Zp, E), f ∈ Cla(Zp, E),

ϕ(μ)(f) = μ([x �→ f(px)]), ψ(μ)(f) = μ([x �→ f(
x

p
)]),

γ(μ)(f) = μ([x �→ f(γx)]).

The element t ∈ R+
E (resp. X) corresponds to the distribution f �→ f ′(0) (resp.

f �→ f(1)− f(0)).
Let π be an admissible locally analytic representation of GL2(Qp) over E. The

continuous dual π∨ of π (equipped with the strong topology) is then a Fréchet

space over E. The action of N(Zp) =

(
1 Zp

0 1

)
on π induces a (separately-

continuous) R+
E-module structure on π∨. Note that t ∈ R+

E acts on π∨ via the

element u+ :=

(
0 1
0 0

)
in the Lie algebra gl2 of GL2(Qp), and we identify u+ and

t frequently without further mention. Moreover, the R+
E-module π∨ is equipped

with an operator ψ given by the action of

( 1
p 0

0 1

)
, and with an action of Γ ∼= Z×

p

given by the action of

(
Z×
p 0
0 1

)
satisfying

ψ(ϕ(x)v) = xψ(v), γ(xv) = γ(x)γ(v)

for x ∈ R+
E, v ∈ π∨ and γ ∈ Γ. Recall in [5, § 2.3] (see in particular [5, Ex. 2.3.3]),

we associated to π a (covariant) functor F (π) from the category of generalized
(ϕ,Γ)-modules to the category of E-vector spaces:

F (π)(D) = lim−→
(r,fr,Dr)∈I(D)

Hom(ψ,Γ)(π
∨, Dr),

where Hom(ψ,Γ) consists of continuousR+
E-linear morphisms that are (ψ,Γ)-equivar-

iant. Note that if D has no t-torsion, then by [15, Cor. 8.9], we have F (π)(D) =
Hom(ψ,Γ)(π

∨, D) (where D is equipped with the inductive limit topology). Let

M(Qp) :=

{(
a b
0 1

)
| a ∈ Q×

p , b ∈ Qp

}
. By definition, the functor F (π) only

depends on π|M(Qp).
Our first result is on the representability of F (π) in de Rham non-trianguline

case. Namely, let Δ be an irreducible (ϕ,Γ)-module free of rank 2 overRE , de Rham
of constant Hodge-Tate weight 0. Let π(Δ) be the locally analytic representation
associated to Δ (cf. [9, § 2.1]) normalized such that the central character ωΔ of
π(Δ) satisfies RE(ωΔ) ∼= ∧2Δ⊗RE

RE(ε
−1), where ε = z|z|−1 : Q×

p → E× and for

a continuous character δ : Q×
p → E×, we denote by RE(δ) the associated rank one
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(ϕ,Γ)-module. Let Δ̌ := Δ∨ ⊗RE
RE(ε) ∼= Δ ⊗RE

RE(ω
−1
Δ ) be the Cartier dual

of Δ.

Theorem 2.1. The functor F (π(Δ)) is representable by Δ̌, i.e. for any generalized
(ϕ,Γ)-module D, F (π(Δ))(D) = Hom(ϕ,Γ)(Δ̌, D).

Remark 2.2. The same statement in the trianguline case was obtained in [5, Thm.
5.4.2(i)] (see Steps 2 & 3 of the proof), where a key ingredient is the representability
of F (π) for locally analytic principal series π. While our proof of Theorem 2.1 is
based on Colmez’s results in [9] and the representability of F (π) for locally algebraic
representations π.

For k ∈ Z, let π(Δ, k) be the locally analytic representation Π(M,k) in [9, Thm.
0.8(iii)] (for M = DF, the irreducible Deligne-Fontaine module associated to Δ).
Recall by loc. cit., there exists an isomorphism of topological E-vector spaces:
∂ : π(Δ) → π(Δ) such that the following maps

g =

(
a b
c d

)
: π(Δ) → π(Δ), v �→ (−c∂ + a)k

(
a b
c d

)
(v)

define a(nother) locally analytic GL2(Qp)-action and the resulting representation
is isomorphic to π(Δ, k). As B(Qp)-representation, we have π(Δ, k) ∼= π(Δ) ⊗E

(xk ⊗ 1) hence:

F (π(Δ))(D) ∼= F (π(Δ, k))(D ⊗RE
RE(x

−k))

for all generalized (ϕ,Γ)-modules D. We then deduce from Theorem 2.1:

Corollary 2.3. The functor F (π(Δ, k)) is representable by t−kΔ̌.

As in § 1, let π∞(Δ) be the smooth representation of GL2(Qp) associated to

Δ, and for k ∈ Z≥1, let πalg(Δ, k) := Symk−1E2 ⊗E π∞(Δ) and πc(Δ, k) :=
π(Δ,−k) ⊗E (xk ◦ det). Recall by [5, Thm. 3.3.1], F (πalg(Δ, k)) is representable
by RE(x

1−k)/tk. By Theorem 2.1 and πc(Δ, k)|M(Qp)
∼= π(Δ)|M(Qp), we see

F (πc(Δ, k)) = F (π(Δ)) is representable by Δ̌. By [5, Thm. 4.1.5], we then obtain:

Corollary 2.4. There exists a natural E-linear map

(6) E : Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
−→ Ext1(ϕ,Γ)

(
RE(x

1−k)/tk, Δ̌
)

satisfying that for [π] ∈ Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
, the functor F (π) is rep-

resentable by the extension of class E([π]).

By [5, Prop. 5.1.2], there is a natural isomorphism of E-vector spaces:

(7) Ext1(ϕ,Γ)
(
RE(x

1−k)/tk, Δ̌
) ∼−−→ DdR(Δ̌)

satisfying that for each non-split [D] ∈ Ext1(ϕ,Γ)
(
RE(x

1−k)/tk, Δ̌
)
, the map sends

the line E[D] to L(D) ↪→ DdR(D) ∼= DdR(Δ̌), where L(D) is defined in a similar

way as in (1): L(D) := Filmax DdR(D) = Fili DdR(D) for i = 0, · · · , k − 1 (noting
such D has Hodge-Tate weights (1 − k, 1)). Using the isomorphism DdR(Δ̌) ∼=
DdR(Δ) (with a shift of the Hodge filtration) induced by Δ̌ ∼= Δ ⊗RE

RE(ω
−1
Δ ),

the composition of (6) and (7) gives a map as in (2) (satisfying the properties
below (2)). Conjecture 1.1 (in de Rham non-trianguline case) then follows from
Theorem 2.5 below.
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Theorem 2.5. The map E is bijective, in particular,

dimE Ext1GL2(Qp)

(
πc(Δ, k), πalg(Δ, k)

)
= 2

and any non-split extension of πc(Δ, k) by πalg(Δ, k) is associated to a (ϕ,Γ)-module
of rank 2 over RE.

By an easy variation of the proof of Theorem 2.5, we also obtain the following
result on locally analytic Ext1:

Corollary 2.6. Let π∞ be a generic irreducible smooth representation of GL2(Qp)
over E, and W be an irreducible algebraic representation of GL2(Qp) over E. Then

Ext1GL2(Qp)(πc(Δ, k), π∞ ⊗E W ) �= 0 if and only if π∞ ⊗E W ∼= πalg(Δ, k).

3. Proofs

We keep the notation in § 2. Let Dr be a generalized (ϕ,Γ)-module over Rr
E

(cf. [5, § 2.2]). We call Dr is good if Dr
∼= (Rr

E)
m1 ⊕ ⊕m2

i=1Rr
E/t

si as Rr
E-module

for some integers m1 ≥ 0, m2 ≥ 0, and si ≥ 1. And if so, we call m = m1 +m2 the
rank of Dr. Note for a general Dr, Dr ⊗Rr

E
Rr′

E is good for r′ � r (cf. [5, (22)]).
We begin with a key lemma.

Lemma 3.1. Let Dr be a good generalized (ϕ,Γ)-module over Rr
E, and

f ∈ Hom(ψ,Γ)(π(Δ)∨, Dr).

Suppose the induced morphism

π(Δ)∨ ⊗R+
E
Rr

E −→ Dr

has dense image. Then the rank of Dr is at most 2.

Proof. As π(Δ, 1) ∼= π(Δ)⊗ (x⊗ 1) as B(Qp)-representation, we have

Hom(ψ,Γ)

(
π(Δ, 1)∨, Dr ⊗Rr

E
Rr

E(x
−1)

)
= Hom(ψ,Γ)(π(Δ)∨, Dr).

In particular, f induces a morphism

π(Δ, 1)∨ ⊗R+
E
Rr

E −→ Dr ⊗Rr
E
Rr

E(x
−1) =: Dr(x

−1),

which has dense image. This morphism further induces a morphism with dense
image:(

π(Δ, 1)∨/u+π(Δ, 1)
)
⊗R+

E
Rr

E
∼= π(Δ, 1)∨/t⊗R+

E
Rr

E −→ Dr(x
−1)/t.

Using [11, Cor. 9.3], we see π(Δ, 1)∨/u+π(Δ, 1)∨ ∼= (π(Δ, 1)[u+])
∨, where (−)[u+]

denotes the subspace annihilated by u+. By [9, Lemma 3.24, Thm. 3.31], π(Δ, 1)[u+]

⊂ π(Δ, 1) is stabilized by GL2(Qp), and is isomorphic to πalg(Δ, 1)⊕2 ∼= π∞(Δ)⊕2 as
GL2(Qp)-representation. By [5, Thm. 3.3.1], the induced morphism π(Δ, 1)∨/t →
Dr(x

−1)/t⊗Rr
E
Rr′

E for r′ � r factors through (Rr′

E/t)
⊕2. For such r′, we obtain thus

a (continuous Rr′

E -linear) morphism with dense image (Rr′

E/t)
⊕2 → Dr(x

−1)/t⊗Rr
E

Rr′

E . As Rr′

E is Bézout (see for example [1, Prop. 4.12]), it is not difficult to see

the rank of Dr(x
−1)/t⊗Rr

E
Rr′

E is at most 2 (= the rank of (Rr′

E/t)
⊕2). Since the

rank of Dr(x
−1)/t ⊗Rr

E
Rr′

E over Rr′

E/t is the same as the rank of Dr, the lemma
follows. �
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Proof of Theorem 2.1. Recall (e.g. see [9, § 2.1]) Δ extends uniquely to a GL2(Qp)-
sheaf over P1(Qp) of central character ωΔ, and the space Δ� P1 of global sections
sits in a GL2(Qp)-equivariant exact sequence

0 → π(Δ)∨ ⊗E (ωΔ ◦ det) → Δ� P1 → π(Δ) → 0.

The space of sections of the GL2(Qp)-sheaf on the open set Zp ↪→ Qp ↪→ P1(Qp) is

isomorphic to Δ, and the composition ι : π(Δ)∨ ⊗E (ωΔ ◦ det) ↪→ Δ�P1
ResZp−−−−→ Δ

is R+
E-linear, continuous and (ψ,Γ)-equivariant. By the same argument as in Step

1 of the proof of [5, Thm. 5.4.2] (noting since Δ is irreducible, Δ is étale up to
twist by characters), ι has image in Δr for r sufficiently large (where Δr is a (ϕ,Γ)-
module over Rr

E such that Δr ⊗Rr
E
RE

∼= Δ), and induces a surjective morphism
ι : π(Δ)∨ ⊗R+

E
Rr

E � Δr.

Let D be a generalized (ϕ,Γ)-module over RE , and let μ ∈ F
(
π(Δ) ⊗E (ω−1

Δ ◦
det)

)
(D). Let (r,Dr, fr) ∈ I(D) such that μ ∈ Hom(ψ,Γ)

(
π(Δ)⊗E (ω−1

Δ ◦det), Dr

)
.

It is sufficient to show that, enlarging r if needed, μ factors through ι. Indeed, if
so, the following map induced by ι (see [5, Lemma 2.2.3 (iii), Remark 2.3.1 (iv)]):

Hom(ϕ,Γ)(Δ, D) −→ F
(
π(Δ)⊗E (ω−1

Δ ◦ det)
)
(D)

is surjective hence bijective (as ι is surjective after tensoring the source by Rr
E).

The theorem then follows using Δ̌ ∼= Δ⊗RE
RE(ω

−1
Δ ).

Replacing r by r′ � r (and Dr by Dr ⊗Rr
E
Rr′

E ), we can and do assume that ι
factors through Δr, and Dr is good. Consider

μ̃ : π(Δ)∨ ⊗E (ωΔ ◦ det) (ι,μ)−−−→ Δr ⊕Dr.

Denote by Mr the closed Rr
E-submodule of Δr ⊕Dr generated by Im(μ̃). As μ̃ is

(ψ,Γ)-equivariant, we see Mr ⊂ Δr⊕Dr is stabilized by ψ and Γ. By the discussion
in the end of [5, § 2.2] (see in particular [5, (24)]), Mr is stabilized by ϕ and Γ,

hence is a generalized (ϕ,Γ)-module over Rr
E . For r′ ≥ r, Mr′ := Mr ⊗Rr

E
Rr′

E is

the closed Rr′

E -submodule of Δr′ ⊕Dr′ := (Δr ⊗Rr
E
Rr′

E )⊕ (Dr ⊗Rr
E
Rr′

E ) generated

by the image of μ̃ : π(Δ)∨ ⊗E (ωΔ ◦ det)
(ι,μ)−−−→ Δr′ ⊕ Dr′ . Let r′ be sufficiently

large such that Mr′ is good. Then by Lemma 3.1, the rank Mr′ is at most 2.
The following composition

(π(Δ)∨ ⊗E (ωΔ ◦ det))⊗R+
E
Rr′

E → Mr′ ↪→ Δr′ ⊕Dr′
pr1−−→ Δr′

is equal to ι hence surjective. We see the induced morphism κ : Mr′ → Δr′

is surjective. It is clear that κ is continuous Rr′

E -linear and (ψ,Γ)-equivariant.
By [5, Remark 2.3.1 (iv)], we see κ is (ϕ,Γ)-equivariant (hence is a morphism of
generalized (ϕ,Γ)-modules). Since the rank of Mr′ is at most the rank of Δr′ ,

and Δr′ has no t-torsion, we deduce using [1, Prop. 4.12] that κ : Mr′
∼−→ Δr′

(as (ϕ,Γ)-module over Rr′

E ) and Mr′ is actually the Rr′

E -submodule of Δr′ ⊕ Dr′

generated by Im(μ̃) (i.e. there is no need to take closure). Thus μ̃ = κ−1 ◦ ι and

μ = pr2 ◦μ̃ = (pr2 ◦κ−1) ◦ ι, in particular, μ factors though π(Δ)∨ ⊗E (ωΔ ◦ det) ι−→
Δr′ → Dr′ . This concludes the proof. �

Remark 3.2. The proof of Lemma 3.1 (hence of Theorem 2.1) is crucially based on
the fact that π(Δ)[u+]|M(Qp) is isomorphic, up to finite dimensional subquotients
and up to twist by characters, to two copies of (the E-model of) the standard
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Kirillov model of generic irreducible smooth representations of GL2(Qp) (i.e. WE

in the proof of Theorem 2.5 below). One may expect this holds in general (see
[9, Remark 2.14]). If so, one may deduce by the same argument that F (π(D)) is
representable by Ď for any (ϕ,Γ)-module D free of rank 2 over RE .

For any non-split [D] ∈ Ext1(ϕ,Γ)(RE/t
k, tkΔ), one can associate (e.g. see [9,

Thm. 0.6 (iii)]) a locally analytic GL2(Qp)-representation π(D) that is isomorphic
to an extension of πc(Δ, k) by πalg(Δ, k). By [5, Thm. 5.4.2 (ii)], we have:

Corollary 3.3. The functor F (π(D)) is representable by Ď.

Proof of Theorem 2.5. By Corollary 3.3, the map (6) is surjective. We prove it is
injective. Let [π] ∈ Ext1GL2(Qp)(πc(Δ, k), πalg(Δ, k)) be non-split. Suppose E([π]) =
0, i.e. F (π) is representable by Δ̌ ⊕ RE(x

1−k)/tk. We will use this property to
construct a GL2(Qp)-equivariant subspace M ⊂ π∨ giving a splitting of π∨ →
πalg(Δ, k)∨ (which leads to a contradiction). The proof is organized as follows: we
first construct M as an R+

E-submodule of π∨ preserved by ψ and Γ, then we show
M �= 0, and M is stabilized by GL2(Qp) and isomorphic to πalg(Δ, k)∨.

For r ∈ Q>0 sufficiently large, we have a natural R+
E-linear continuous (ψ,Γ)-

equivariant morphism j : π∨ → Δ̌r⊕Rr
E(x

1−k)/tk such that the induced morphism

(8) π∨ ⊗RE
Rr

E −→ Δ̌r ⊕Rr
E(x

1−k)/tk

is surjective. Indeed, we have by [5, Thm. 4.1.5] a natural commutative diagram:

(9)

0 −−−−→ πc(Δ, k)∨ ⊗R+
E
Rr

E −−−−→ π∨ ⊗R+
E
Rr

E −−−−→ πalg(Δ, k)∨ ⊗R+
E
Rr

E −−−−→ 0⏐⏐� (8)

⏐⏐� ⏐⏐�
0 −−−−→ Δ̌r −−−−→ Δ̌r ⊕Rr

E(x
1−k)/tk −−−−→ Rr

E(x
1−k)/tk −−−−→ 0.

The left vertical map is surjective as it is induced from:

ι : πc(Δ, k)∨ ∼= π(Δ)∨
ι−−→ Δ̌r

where the first isomorphism is M(Qp)-equivariant, and the second map is given
as in the proof of Theorem 2.1. By [5, Lemma 3.3.5 (ii)] and its proof, the right
vertical map is also surjective, hence so is the middle vertical map. Let M :=

Ker(pr1 ◦j : π∨ → Δ̌r). As the composition πc(Δ, k)∨ ↪→ π∨ pr1 ◦j−−−→ Δ̌r is equal to
ι and hence is injective by [9, Prop. 2.20], we deduce M ∩ πc(Δ, k)∨ = 0. So the
following composition (continuous R+

E-linear and (ψ,Γ)-equivariant)

M ↪−→ π∨ � πalg(Δ, k)∨

is injective.
(1) We first prove M �= 0. Suppose M = 0 hence π∨ ↪→ Δ̌r. As Δ̌r is t-torsion
free, so is π∨. From the commutative diagram (recalling u+ = t)

0 −−−−→ πc(Δ, k)∨ −−−−→ π∨ −−−−→ πalg(Δ, k)∨ −−−−→ 0

u+

⏐⏐� u+

⏐⏐� u+

⏐⏐�
0 −−−−→ πc(Δ, k)∨ −−−−→ π∨ −−−−→ πalg(Δ, k)∨ −−−−→ 0

we deduce an exact sequence (consisting of continuous maps)

(10)
0 → πalg(Δ, k)∨[u+]

δ−→ πc(Δ, k)∨/u+πc(Δ, k)∨ → π∨/u+π
∨

→ πalg(Δ, k)∨/u+πalg(Δ, k)∨ → 0.
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Roughly speaking, we will show a contradiction by considering the multiplicities of
the Kirillov model in the dual of each term of (10). By the GL2(Qp)-equivariant

isomorphism πalg(Δ, k)∨ ∼= π∞(Δ)∨⊗E (Symk−1E2)∨, we get a B(Qp)-equivariant
isomorphism (of reflexive Fréchet E-spaces):

(11) πalg(Δ, k)∨[u+] ∼= π∞(Δ)∨ ⊗E (1⊗ x1−k).

Using the isomorphisms of B(Qp)-representations

πc(Δ, k) ∼= π(Δ, 1)⊗E (x−1 ⊗ xk−1), π(Δ, 1)[u+] ∼= π∞(Δ)⊕2,

we deduce a B(Qp)-equivariant isomorphism of reflexive Fréchet E-spaces (similarly
as in the proof of Lemma 3.1, the first isomorphism following from [11, Cor. 9.3]):

(12) πc(Δ, k)∨/u+πc(Δ, k)∨ ∼= πc(Δ, k)[u+]
∨ ∼=

(
π∞(Δ)∨ ⊗E (x⊗ x−k)

)⊕2
.

By similar arguments of [5, Lemma 2.1.5], the injection δ induces a continuous map
of spaces of compact type with dense image δ∨ : πc(Δ, k)[u+] → πalg(Δ, k)∨[u+]

∨ ∼=
π∞(Δ)⊗E (1⊗xk−1). As π∞(Δ) is equipped with the finest locally convex topology,
δ∨ is surjective (see for example [15, § 5.C]). We have hence an exact sequence of
spaces of compact type (all equipped with the finest locally convex topology):

(13) 0 → Ker(δ∨) → πc(Δ, k)[u+] → πalg(Δ, k)∨[u+]
∨ → 0.

One directly checks (by diagram chasing) that for b∈B(Qp) and v∈πalg(Δ, k)∨[u+],
δ(bv) = (x−1 ⊗ x)(b)b(δ(v)). We see Ker(δ∨) is stabilized by B(Qp), and the exact
sequence in (13) becomes B(Qp)-equivariant if we twist πalg(Δ, k)∨[u+]

∨ by the
character x−1 ⊗ x of B(Qp).

Let η : Qp → Cp be a non-trivial locally constant (additive) character. Let
W := C∞

c (Q×
p ,Cp) be the space of locally constant Cp-valued functions on Q×

p ,
which is equipped with a natural M(Qp)-action given by((

a 0
0 1

)
f

)
(x) = f(ax),

((
1 b
0 1

)
f

)
(x) = η(bx)f(x).

Recall W is irreducible and admits an E-model WE , that is unique up to scalars in
C×

p (see [5, Lemma 3.3.2]). By classical theory of Kirillov model (see for example
[3, § 3.5]), we have π∞(Δ)|M(Qp)

∼= WE . By (11) and using (12) (13), we see

Ker(δ∨)|M(Qp)
∼= WE ⊗E (x−1 ⊗ x1−k). We define F (Ker(δ∨)) exactly in the same

way as for GL2(Qp)-representations (noting in the definition of F (−), we actually
only use the M(Qp)-action). By [5, Lemma 3.3.5 (2)], F (Ker(δ∨)) is representable
by RE(x

−1)/t.
By (9), we have a commutative diagram

(14)

πc(Δ, k)∨/u+πc(Δ, k)∨ −−−−→ π∨/u+π
∨

j1

⏐⏐� ⏐⏐�
Δ̌r/t −−−−→ Δ̌r/t⊕Rr

E(x
1−k)/t,

such that each vertical map becomes surjective if we tensor the corresponding source
by Rr

E . As the bottom horizontal map is obviously injective, we deduce using (10)
that πalg(Δ, k)∨[u+] ⊂ Ker j1 and hence j1 factors through (a continuous R+

E-linear
(ψ,Γ)-equivariant map)

j′1 : Ker(δ∨)∨ −→ Δ̌r/t
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which is surjective after tensoring the source by Rr
E . However, as F (Ker(δ∨))

is represented by RE(x
−1)/t, we see j′1 factors through (enlarging r if needed)

Rr
E(x

−1)/t → Δ̌r/t, which cannot be surjective, a contradiction.
(2) We show M( �= 0) is stabilized by GL2(Qp) hence isomorphic to πalg(Δ, k)∨,
which will lead to a contradiction (and will conclude the proof of the theorem) as
the extension π is non-split. We begin with the following claim.

Claim. For v ∈ π∨, the followings are equivalent:

(1) v ∈ M ,
(2) tkv = 0,
(3) tnv = 0 for n sufficiently large.

We prove the claim. Since M ↪→ πalg(Δ, k)∨ is R+
E-equivariant and πalg(Δ, k)∨

is annihilated by tk, we see (1) ⇒ (2). (2) ⇒ (3) is trivial. Suppose tnv = 0 for
some n, then pr1 ◦j(tnv) = tn pr1 ◦j(v) = 0. Since Δ̌r has no t-torsion, we see
pr1 ◦j(v) = 0, i.e. v ∈ M .

For v ∈ π∨, b ∈ B(Qp), we have tn(bv) = (u+)
n · (bv) = b(Adb−1(u+)

n · v).
If tnv = 0, then Adb−1(u+)

n · v = 0 thus tn(bv) = 0. By the claim, we see
M ⊂ πalg(Δ, k)∨ is stabilized by B(Qp).

Next we show M is stabilized by u− =

(
0 0
1 0

)
∈ gl2. Since M is a B(Qp)-

submodule of πalg(Δ, k)∨, we see for any v ∈ M , the b-module generated by v is

finite dimensional and is spanned by eigenvectors of h =

(
1 0
0 −1

)
∈ gl2. Using the

relation [(u+)
n+1, u−] = n(u+)

n(h+n) in U(gl2), we deduce for v ∈ M , tn(u− ·v) =
(u+)

nu−·v=0 for n sufficient large and hence u−·v ∈ M by the claim. Consequently,
M is a U(gl2)-submodule of π∨ and the injection M ↪→ πalg(Δ, k)∨ is U(gl2)-
equivariant. We deduce then any vector v in M is annihilated by (u−)

k.

Let w =

(
0 1
1 0

)
∈ GL2(Qp). For v ∈ M , we have tkwv = w(Adw(u+)

k · v) =

w(uk
− ·v) = 0. Thus M is stabilized by w, hence is stabilized by GL2(Qp) (recalling

M is B(Qp)-invariant). Since πalg(Δ, k) is irreducible, we deduce M ∼= πalg(Δ, k)∨.
As previously discussed, this finishes the proof. �

Proof of Corollary 2.6. The “if” part is a trivial consequence of Theorem 2.5. As-
sume now

Ext1GL2(Qp)
(πc(Δ, k), π∞ ⊗E W ) �= 0.

Then π∞ ⊗E W has the same central character and infinitesimal character as
πc(Δ, k). By [9, Prop. 3.1.1], one deduces W ∼= Symk−1E2.

Similarly as in Corollary 2.4 (using Corollary 3.3, [5, Thm. 3.3.1 & Thm. 4.1.5]),
we have a morphism

E ′ : Ext1GL2(Qp)

(
πc(Δ, k), π∞ ⊗E Symk−1E2

)
−→ Ext1(ϕ,Γ)(RE(x

1−k)/tk, Δ̌).

By the same argument as in the proof of Theorem 2.5 (with πalg(Δ, k) replaced by

π∞ ⊗E Symk−1E2), the morphism is injective. Suppose π∞ is not isomorphic to

π∞(Δ) and there exists a non-split [π] ∈ Ext1GL2(Qp)

(
πc(Δ, k), π∞⊗E Symk−1E2

)
.

Let [Ď] := E ′([π]), and let [π(D)] := E−1([Ď]). The pull-back of πc(Δ, k) of
π(D) ⊕ π � πc(Δ, k)⊕2 via the diagonal map gives a non-split extension π̃ of

πc(Δ, k) by (π∞ ⊗E Symk−1 E2) ⊕ πalg(Δ, k) satisfying π̃/πalg(Δ, k) ∼= π and
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π̃/(π∞ ⊗E Symk−1E2) ∼= π(D). By [5, Thm. 4.1.5], F (π̃) is representable by
an extension of (RE(x

1−k)/tk)⊕2 by Δ̌ such that the pull-back of either of the two
factors RE(x

1−k)/tk is isomorphic to Ď. We deduce then F (π̃) is representable
by Ď ⊕ RE(x

1−k)/tk. We have thus a continuous R+
E-linear (ψ,Γ)-equivariant

morphism when r is sufficiently large:

j : π̃∨ −→ Ďr ⊕Rr
E(x

1−k)/tk

such that the morphism becomes surjective if we tensor the source by Rr
E (by

similar arguments as for the surjectivity of (8)). Let M be the kernel of pr1 ◦j.
Since F (π(D))(Ď) ∼= End(ϕ,Γ)(Ď) ∼= E, the restriction of pr1 ◦j on π(D)∨ is equal,

up to non-zero scalars, to the morphism π(D)∨ → Ď in [9, Prop. 2.20] hence is
injective. Using a similar exact sequence as in (10) with π replaced by π(D), we can
deduce π(D)[u+]|M(Qp)

∼= (WE⊗E(x
−1⊗xk−1))⊕2 (see also [9, Remark 3.3.2]). Now

by the same arguments as in the proof of Theorem 2.5
(
with πc(Δ, k) replaced by

π(D) and πalg(Δ, k) replaced by π∞⊗E Symk−1E2
)
, one can prove M is GL2(Qp)-

invariant, and is isomorphic to (π∞ ⊗E Symk−1 E2)∨. Hence π̃ ∼= π(D)⊕ (π∞ ⊗E

Symk−1E2) and then π ∼= π̃/πalg(Δ, k) ∼= πc(Δ, k) ⊕ (π∞ ⊗E Symk−1E2)
(
noting

HomGL2(Qp)

(
πalg(Δ, k), π∞ ⊗E Symk−1E2

)
= 0 by assumption

)
, a contradiction.

�
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lish summary), Invent. Math. 148 (2002), no. 2, 219–284, DOI 10.1007/s002220100202.
MR1906150
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