Characters of irreducible unitary representations of $\operatorname {U}(n, n+1)$ via double lifting from $\operatorname {U}(1)$
HTML articles powered by AMS MathViewer
- by Allan Merino PDF
- Represent. Theory 26 (2022), 325-369 Request permission
Abstract:
In this paper, we obtained character formulas of irreducible unitary representations of $U(n, n+1)$ by using Howe’s correspondence and the Cauchy–Harish-Chandra integral. The representations of $U(n, n+1)$ we are dealing with are obtained from a double lifting of a representation of $U(1)$ via the dual pairs $(U(1), U(1, 1))$ and $(U(1, 1), U(n, n+1))$.References
- Anne-Marie Aubert and Tomasz Przebinda, A reverse engineering approach to the Weil representation, Cent. Eur. J. Math. 12 (2014), no. 10, 1500–1585. MR 3224014, DOI 10.2478/s11533-014-0428-8
- Florent Bernon and Tomasz Przebinda, Normalization of the Cauchy Harish-Chandra integral, J. Lie Theory 21 (2011), no. 3, 615–702. MR 2858079
- Florent Bernon and Tomasz Przebinda, The Cauchy Harish-Chandra integral and the invariant eigendistributions, Int. Math. Res. Not. IMRN 14 (2014), 3818–3862. MR 3239090, DOI 10.1093/imrn/rnt058
- Abderrazak Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 573–609 (French, with English summary). MR 1296557, DOI 10.24033/asens.1701
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Andrzej Daszkiewicz, Witold Kraśkiewicz, and Tomasz Przebinda, Nilpotent orbits and complex dual pairs, J. Algebra 190 (1997), no. 2, 518–539. MR 1441961, DOI 10.1006/jabr.1996.6910
- Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97–143. MR 733809
- Thomas J. Enright, Analogues of Kostant’s ${\mathfrak {u}}$-cohomology formulas for unitary highest weight modules, J. Reine Angew. Math. 392 (1988), 27–36. MR 965055, DOI 10.1515/crll.1988.392.27
- Harish-Chandra, Representations of semisimple Lie groups. III. Characters, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 366–369. MR 42423, DOI 10.1073/pnas.37.6.366
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241–318. MR 219665, DOI 10.1007/BF02391779
- Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457–508. MR 180631, DOI 10.1090/S0002-9947-1965-0180631-0
- Henryk Hecht, The characters of some representations of Harish-Chandra, Math. Ann. 219 (1976), no. 3, 213–226. MR 427542, DOI 10.1007/BF01354284
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- Takeshi Hirai, The Plancherel formula for $\textrm {SU}(p,\,q)$, J. Math. Soc. Japan 22 (1970), 134–179. MR 268331, DOI 10.2969/jmsj/02220134
- Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773, DOI 10.1007/978-3-642-61497-2
- Roger Howe, Preliminaries i, Unpublished.
- Roger Howe, Wave front sets of representations of Lie groups, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Institute of Fundamental Research, Bombay, 1981, pp. 117–140. MR 633659
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001. An overview based on examples; Reprint of the 1986 original. MR 1880691
- Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
- Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229–255. MR 818351, DOI 10.1007/BF01388961
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI 10.1007/BF01389041
- Hung Yean Loke and Jiajun Ma, Invariants and $K$-spectrums of local theta lifts, Compos. Math. 151 (2015), no. 1, 179–206. MR 3305312, DOI 10.1112/S0010437X14007520
- Allan Merino, Characters of some unitary highest weight representations via the theta correspondence, J. Funct. Anal. 279 (2020), no. 8, 108698, 70. MR 4124852, DOI 10.1016/j.jfa.2020.108698
- Allan Merino, Transfer of characters in the theta correspondence with one compact member, J. Lie Theory 30 (2020), no. 4, 997–1026. MR 4131128
- Allan Merino, Transfer of characters for discrete series representations of the unitary groups in the equal rank case via the Cauchy-Harish-Chandra integral, arXiv:2101.02063, 2021.
- Annegret Paul, Howe correspondence for real unitary groups, J. Funct. Anal. 159 (1998), no. 2, 384–431. MR 1658091, DOI 10.1006/jfan.1998.3330
- Annegret Paul, First occurrence for the dual pairs $(\textrm {U}(p,q),\textrm {U}(r,s))$, Canad. J. Math. 51 (1999), no. 3, 636–657. MR 1701329, DOI 10.4153/CJM-1999-029-6
- Tomasz Przebinda, Characters, dual pairs, and unipotent representations, J. Funct. Anal. 98 (1991), no. 1, 59–96. MR 1111194, DOI 10.1016/0022-1236(91)90091-I
- Tomasz Przebinda, Characters, dual pairs, and unitary representations, Duke Math. J. 69 (1993), no. 3, 547–592. MR 1208811, DOI 10.1215/S0012-7094-93-06923-2
- Tomasz Przebinda, A Cauchy Harish-Chandra integral, for a real reductive dual pair, Invent. Math. 141 (2000), no. 2, 299–363. MR 1775216, DOI 10.1007/s002220000070
- Tomasz Przebinda, The character and the wave front set correspondence in the stable range, J. Funct. Anal. 274 (2018), no. 5, 1284–1305. MR 3778675, DOI 10.1016/j.jfa.2018.01.002
- Wilfried Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47–144. MR 396854, DOI 10.1007/BF01389847
- Binyong Sun and Chen-Bo Zhu, Conservation relations for local theta correspondence, J. Amer. Math. Soc. 28 (2015), no. 4, 939–983. MR 3369906, DOI 10.1090/S0894-0347-2014-00817-1
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, Mass., 1981. MR 632407
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
Additional Information
- Allan Merino
- Affiliation: Department of Mathematics, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
- Address at time of publication: Department of Mathematics and Statistics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt., Ottawa, Ontario, K1N6N5, Canada
- MR Author ID: 1393076
- ORCID: 0000-0001-8545-9803
- Email: amerino@uottawa.ca
- Received by editor(s): March 17, 2021
- Received by editor(s) in revised form: September 14, 2021
- Published electronically: March 23, 2022
- Additional Notes: The author was supported by the MOE-NUS AcRF Tier 1 grants R-146-000-261-114 and R-146-000-302-114.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 325-369
- MSC (2020): Primary 22E45; Secondary 22E46, 22E30
- DOI: https://doi.org/10.1090/ert/597
- MathSciNet review: 4398474