REPRESENTATIONS OF 2-TRANSITIVE LOCALLY COMPACT GROUPS

ROBERT A. BEKES

Abstract

We show that noncompact representations of 2-transitive locally compact groups are irreducible.

InTRODUCTION

Let G be a locally compact group acting on a topological space X such that the map $G \times X \rightarrow X$ is continuous. Then there exists a Radon measure μ on X such that the action of G on X can be extended to a continuous unitary representation of G on the Hilbert space $L_{2}(X, \mu)$. See Folland [5].

The action of G is transitive if for x and y in X there exists g in G such that $g x=y$. The action of G is 2-transitive if for $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$ in X there exists g in G such that $g x_{1}=y_{1}$ and $g x_{2}=y_{2}$.

Assume that G acts 2-transitively on X. If G is finite, using Burnside's Lemma, the unitary representation of G on X splits into two subrepresentations, the identity representation and an irreducible representation orthogonal to the identity representation; see Serre [6, Section 2.3, problem 2.6]. For infinite discrete G and X, Chernoff [2] showed that the unitary representation of G on X is irreducible. The purpose of this paper is to show that for noncompact G and X the unitary representation of G on X is irreducible.

1. Noncompact G and X

In this section we prove Theorem 1
Theorem 1. Let G be a noncompact nondiscrete locally compact and σ-compact topological transformation group acting faithfully and 2-transitively on a locally compact noncompact not totally disconnected space X. Then the unitary representation of G on the Hilbert space $L_{2}(X, \mu)$ is irreducible.

Throughout this section G and X satisfy the hypothesis of Theorem 1 and all group operations are written multiplicatively.

Let H be the stabilizer of a point $o \in X$. Then H acts transitively on $X \backslash\{o\}$. By Theorem C in Kramer [5, X carries the structure of a finite dimensional vector space, with basepoint $o=0$. The group H is a matrix group, acting transitively on the set of nonzero vectors. The group G is then the semi-direct product $G=H \ltimes X$, in its natural action on X.

[^0]Let f be a continuous function X with compact support and let $h \in H$. Define $\pi(h) f$ on X by $\pi(h) f(x)=\sqrt{\rho(h)^{-1}} f\left(h^{-1} x\right)$ where $\rho(h)$ is the absolute value of the determinant of h acting on X. Then $\pi(h)$ can be extended to a unitary operator on the Hilbert space $L_{2}(X, \mu)$ and the map $h \rightarrow \pi(h)$ to a continuous unitary representation of H on $L_{2}(X, \mu)$. See Folland [4, Section 6.1, pg. 154]. Since $G=H \ltimes X$ we can extend ρ to all of G by $\rho(h x)=\rho(h)$ and so $\rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$ for $g_{1}, g_{2} \in G$. The unitary representation π can then be extended to all of G by $\pi(g) f(x)=\sqrt{\rho(g)^{-1}} f\left(g^{-1} x\right)$.

Lemma 1. Let $x_{1} \neq x_{2}$ in X. Then there exist x_{3}, x_{4}, \ldots and $\delta>0$ such that the x_{i} are all distinct and for $i \neq j$ there exists $g \in G$ with $g x_{i}=x_{1}, g x_{j}=x_{2}$, and $\rho(g) \leq \delta$.

Proof. Let π be the unitary representation of G on $L_{2}(X, \mu)$ defined above. Since G is 2 -transitive, there exists a g_{0} such that $g_{0} x_{2}=x_{1}$ and $g_{0} x_{1}=x_{2}$. Let $\delta=\rho\left(g_{0}\right)$. Suppose we have $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ such that for $i \neq j$ there is $g \in G$ with $g x_{i}=x_{1}, g x_{j}=x_{2}$, and $\rho(g) \leq \delta$. Choose x_{n+1} as follows: For each $1 \leq i<n$ let H_{i} be the stabilizer of x_{i}. Since G is 2-transitive, $X=\left\{g x_{n} \mid g \in H_{i}\right\}$. Let $A=\left\{g x_{n} \mid \rho(g) \geq 1\right\}$. Then A has nonempty interior and so $\mu(A)>0$. Therefore also $\mu\left(A \backslash\left\{x_{1}, \ldots x_{n}\right\}\right)>0$. Choose $x_{n+1} \in A \backslash\left\{x_{1}, \ldots x_{n}\right\}$. Then for each $1 \leq i<n$ there exists g_{i} such that $x_{n+1}=g_{i} x_{n}, g_{i} x_{i}=x_{i}$, and $\rho\left(g_{i}\right) \geq 1$. So $g_{i}{ }^{-1} x_{n+1}=x_{n}, g_{i}^{-1} x_{i}=x_{i}$, and $\rho\left(g_{i}\right) \geq 1$. Therefore $\rho\left(g_{i}^{-1}\right)=\rho\left(g_{i}\right)^{-1} \leq 1$. By the choice of $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, there exists g^{\prime} such that $g^{\prime} x_{n}=x_{2}, g^{\prime} x_{i}=x_{1}$, and $\rho\left(g^{\prime}\right) \leq \delta$. Then setting $g=g^{\prime} g_{i}^{-1}$ we get $g x_{n+1}=x_{2}, g x_{i}=x_{1}$, and $\rho(g)=\rho\left(g^{\prime} g_{i}^{-1}\right)=\rho\left(g^{\prime}\right) \rho\left(g_{i}^{-1}\right) \leq \delta$. Therefore the set $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, x_{n+1}$ has the desired property.

Proof of Theorem 1. Let \langle,$\rangle be the inner product on L_{2}(X, \mu)$. Let U be a measurable set in X with compact closure. Then $\mu(U)<\infty$. Let x_{1} and x_{2} be such that $x_{1} U \simeq x_{1}+U$ and $x_{2} U \simeq x_{2}+U$ are disjoint. Using Lemma 1 we get distinct $x_{1}, x_{2}, x_{3}, \ldots$ in X and $\delta>0$ such that for $i \neq j$ there exists $g_{i j} \in G$ with $g_{i j} x_{i}=x_{1}, g_{i j} x_{j}=x_{2}$ and $\rho\left(g_{i j}\right) \leq \delta$. Therefore $g_{i j}\left(x_{i} U\right)=\left(g_{i j} x_{i}\right) U=x_{1} U$, $g_{i j}\left(x_{j} U\right)=\left(g_{i j} x_{j}\right) U=x_{2} U$, and so $\left\{x_{i} U\right\}$ is a sequence of disjoint subsets.

For any subset W of X let ξ_{W} denote the characteristic function of W. Let $f_{n}=\sum_{i=1}^{n} c_{i} \xi_{x_{i} U}$ with $c_{i} \geq 0$. Since X acts transitively on itself, there exists $v_{i} \in X$ such that $v_{i} x_{i}=x_{1}$. Since $\rho \equiv 1$ on $X, \mu\left(x_{i} U\right)=\mu\left(x_{1} U\right)$. Therefore $\left\langle f_{n}, f_{n}\right\rangle=\sum_{i=1}^{n} c_{i}{ }^{2} \mu\left(x_{1} U\right)$. Let T be a positive intertwining operator for the action π of G on X. Then

$$
\begin{aligned}
\left\langle T \xi_{x_{i} U}, \xi_{x_{i} U}\right\rangle & =\left\langle\pi\left(v_{i}\right) T \xi_{x_{i} U}, \pi\left(v_{i}\right) \xi_{x_{i} U}\right\rangle \\
& =\left\langle T \xi_{v_{i} x_{i} U}, \xi_{v_{i} x_{i} U}\right\rangle \\
& =\left\langle T \xi_{x_{1} U}, \xi_{x_{1} U}\right\rangle
\end{aligned}
$$

and for $i \neq j$,

$$
\begin{aligned}
\left\langle T \xi_{x_{i} U}, \xi_{x_{j} U}\right\rangle & =\left\langle\pi\left(g_{i j}\right) T \xi_{x_{i} U}, \pi\left(g_{i j}\right) \xi_{x_{j} U}\right\rangle \\
& =\rho\left(g_{i j}\right)^{-1}\left\langle T \xi_{g_{i j} x_{i} U}, \xi_{g_{i j} x_{j} U}\right\rangle \\
& =\rho\left(g_{i j}\right)^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\left\langle T f_{n}, f_{n}\right\rangle & =\sum_{i=1}^{n} c_{i}{ }^{2}\left\langle T \xi_{x_{i} U}, \xi_{x_{i} U}\right\rangle+\sum_{i \neq j} c_{i} c_{j}\left\langle T \xi_{x_{i} U}, \xi_{x_{j} U}\right\rangle \\
& =\sum_{i=1}^{n} c_{i}{ }^{2}\left\langle T \xi_{x_{1} U}, \xi_{x_{1} U}\right\rangle+\sum_{i \neq j} c_{i} c_{j} \rho\left(g_{i j}\right)^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle . \tag{1}
\end{align*}
$$

Since T is positive $\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle$ is real.
If $\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \geq 0$, from (11) we get

$$
\begin{align*}
\left\langle T f_{n}, f_{n}\right\rangle & \geq \sum_{i \neq j} c_{i} c_{j} \rho\left(g_{i j}\right)^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \\
& \geq\left[\sum_{i \neq j} c_{i} c_{j} \delta^{-1}\right]\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \tag{2}\\
& =\left[\left[\sum_{i=1}^{n} c_{i}\right]^{2}-\sum_{i=1}^{n} c_{i}^{2}\right] \delta^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle
\end{align*}
$$

Now let $c_{i}=\frac{1}{i}$ and $f=\sum_{i=1}^{\infty} c_{i} \xi_{x_{i} U}$. Then since $\sum_{i=1}^{\infty} c_{i}{ }^{2}<\infty$ we have $f \in$ $L_{2}(X, \mu)$ and $\lim _{n \rightarrow \infty}\left\langle T f_{n}, f_{n}\right\rangle=\langle T f, f\rangle<\infty$. Since $\sum_{i=1}^{\infty} c_{i}=\infty$, letting $n \rightarrow \infty$ in (22) we must have $\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle=0$.

If $\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \leq 0$, from (1) we get

$$
\begin{align*}
\left\langle T f_{n}, f_{n}\right\rangle & =\sum_{i=1}^{n} c_{i}^{2}\left\langle T \xi_{x_{1} U}, \xi_{x_{1} U}\right\rangle+\sum_{i \neq j} c_{i} c_{j} \rho\left(g_{i j}\right)^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \\
& \leq \sum_{i=1}^{n} c_{i}{ }^{2}\left\langle T \xi_{x_{1} U}, \xi_{x_{1} U}\right\rangle+\sum_{i \neq j} c_{i} c_{j} \delta^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \tag{3}\\
& =\sum_{i=1}^{n} c_{i}{ }^{2}\left\langle T \xi_{x_{1} U}, \xi_{x_{1} U}\right\rangle+\left[\left[\sum_{i=1}^{n} c_{i}\right]^{2}-\sum_{i=1}^{n} c_{i}^{2}\right] \delta^{-1}\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle
\end{align*}
$$

As above, let $c_{i}=\frac{1}{i}$. Then $\sum_{i=1}^{\infty} c_{i}^{2}<\infty, \sum_{i=1}^{\infty} c_{i}=\infty$, and $\lim _{n \rightarrow \infty}\left\langle T f_{n}, f_{n}\right\rangle=$ $\langle T f, f\rangle<\infty$. So with $\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle \leq 0$, letting $n \rightarrow \infty$ in (3) we must have $\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle=0$. Therefore if $\mu(U)<\infty,\left\langle T \xi_{x_{1} U}, \xi_{x_{2} U}\right\rangle=0$ when $x_{1} U$ and $x_{2} U$ are disjoint.

Since X is homeomorphic with \mathbb{R}^{n}, there is a sequence $\left\{U_{k}\right\}_{k=1}^{\infty}$ of subsets of X with $\mu\left(U_{k}\right) \rightarrow 0$ such that each U_{k} is the disjoint union of U_{k+1} and a translate of U_{k+1} and finite linear combinations of characteristic functions of disjoint translates of $U_{k}, k \geq 1$, are dense in $L_{2}(X, \mu)$.

Now suppose $W=U \cup x U$ where $0<\mu(U)<\infty$ and U and $x U$ are disjoint. Then by the above argument, $\left\langle T \xi_{U}, \xi_{x U}\right\rangle=\left\langle T \xi_{x U}, \xi_{U}\right\rangle=0$. There exists v in X such that $v(x U)=U$. Since $\rho \equiv 1$ on X, we also get

$$
\left\langle T \xi_{x U}, \xi_{x U}\right\rangle=\left\langle\pi(v) T \xi_{x U}, \pi(v) \xi_{x U}\right\rangle=\left\langle T \xi_{v(x U)}, \xi_{v(x U)}\right\rangle=\left\langle T \xi_{U}, \xi_{U}\right\rangle
$$

Let

$$
\lambda=\frac{\left\langle T \xi_{W}, \xi_{W}\right\rangle}{\mu(W)}
$$

Then

$$
\lambda=\frac{\left\langle T \xi_{U}, \xi_{U}\right\rangle+\left\langle T \xi_{x U}, \xi_{x U}\right\rangle}{2 \mu(U)}=\frac{\left\langle T \xi_{U}, \xi_{U}\right\rangle}{\mu(U)} .
$$

So for any such decomposition, λ is independent of U and W and so $\left\langle T \xi_{W}, \xi_{W}\right\rangle=$ $\lambda\left\langle\xi_{W}, \xi_{W}\right\rangle$ and $\left\langle T \xi_{U}, \xi_{U}\right\rangle=\lambda\left\langle\xi_{U}, \xi_{U}\right\rangle$. Therefore $\left\langle T \xi_{U_{k}}, \xi_{U_{k}}\right\rangle=\lambda\left\langle\xi_{U_{k}}, \xi_{U_{k}}\right\rangle$ for all k and so $T=\lambda I$. It then follows that the representation π is irreducible.

By Theorem the noncompact representations of the 2-transitive groups classified by Tits in [7] are all irreducible. For a complete classification see Kramer [5) Theorem 5.14 and 6.17].

Examples. Let G be the $a x+b$ group acting on \mathbb{R} by $x \mapsto a x+b$ where $a \neq 0$. If $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$ the system $\left[\begin{array}{ll}x_{1} & 1 \\ x_{2} & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ has a solution. Therefore the action of G is 2-transitive on \mathbb{R}, see Conrad [3, example 4.3]. By Theorem [1, the unitary representation of G on $L_{2}(\mathbb{R}, \mu)$ is irreducible. This result also follows from the representation theory of semi-direct products, see Folland [4. Section 6.7, pg. 189].

Some examples from Kramer [5, Theorem 5.14 and 6.17] of groups acting 2transitively and hence irreducibly on $X \cong \mathbb{R}^{n}$, are $G=\mathrm{SO}(n) \cdot \mathbb{R}_{>0} \ltimes \mathbb{R}^{n}$ and $G=\mathrm{SL}_{n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$ with $n \geq 3$, and $G=\operatorname{Sp}(n) \cdot \mathbb{C}^{*} \ltimes \mathbb{R}^{n}$ and $G=\operatorname{Sp}_{2 n}(\mathbb{R}) \ltimes \mathbb{R}^{n}$ with $n \geq 2$.

The argument in the proof of Theorem 1 simplifies for infinite discrete groups acting on an infinite discrete set X. To prove irreducibility, start by selecting distinct x_{1}, x_{2}, \ldots in X and replacing $x_{i} U$ by the singleton $\left\{x_{i}\right\}$ and W with $\left\{x_{i}, x_{1}\right\}$. This case is proved in Chernoff [2].

For example let G be the group of permutations on \mathbb{Z} that move only a finite number of integers. Then G acts 2-transitively and so the unitary representation of G on $l_{2}(\mathbb{Z}, \mu)$ is irreducible.

2. Compact X

Suppose G is a locally compact group acting 2 -transitively on a compact topological space X. Let π be the unitary representation of G on the Hilbert space $L_{2}(X, \mu)$. Unlike the situation for finite groups, π restricted to the orthogonal compliment of the constant functions in $L_{2}(X, \mu)$ may not be irreducible as the following example illustrates.

Example. Let $G=\mathrm{SL}_{2}(\mathbb{R})$ and $X=\mathbb{R P}^{1}$, the real projective line. Then it is shown in Conrad [3, Theorem 4.21] that the action of G on X is 2 -transitive. It follows from Casselman [1, page 16] that $X \cong G / B$ where B is the Borel subgroup of G and the representation on X is, via normalized induction, $\operatorname{Ind}_{B}^{G} \delta_{B}^{-1 / 2}$ where $\delta\left[\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right]=t^{2}$. By Casselman [1, Proposition 8.7] with $s=-1, m=1$, and $n=0$, the orthogonal complement of the projection onto the space of constant functions on X splits into two infinite dimensional subrepresentations.

If G is compact, let H be the stabilizer of a point $o \in X$. Then H is also compact. But H acts transitively on the open set $X \backslash\{o\}$, so $X \backslash\{o\}$ is clopen. Therefore $\{o\}$ is open and so X is discrete and hence finite.

Acknowledgments

I would like to thank Kenneth A. Ross for his critique of this paper, Stephen DeBacker for the reference to Casselman [1], and the referee for helpful suggestions.

References

[1] Bill Casselman, Analysis on $\mathrm{SL}(2)$ representations of $\mathrm{SL}_{2}(\mathbb{R})$, https://pdfs. semanticscholar.org/3556/1bd7456d3fa2892d087e497472109a993f1f.pdf, 2013.
[2] Paul R. Chernoff, Irreducible representations of infinite-dimensional transformation groups and Lie algebras. I, J. Funct. Anal. 130 (1995), no. 2, 255-282, DOI 10.1006/jfan.1995.1069. MR 1335380
[3] Keith Conrad, Transitive group actions, https://www.math.uconn.edu/~kconrad/blurbs/ grouptheory/transitive.pdf, 2009.
[4] Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
[5] Linus Kramer, Two-transitive Lie groups, J. Reine Angew. Math. 563 (2003), 83-113, DOI 10.1515/crll.2003.085. MR2009240
[6] Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR0450380
[7] J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie (French), Acad. Roy. Belg. Cl. Sci. Mém. Coll. in $8^{\circ} 29$ (1955), no. 3, 268. MR76286

Department of Mathematics and Computer Science, Santa Clara University, Santa Clara, California 95053

Email address: rbekes@scu.edu

[^0]: Received by the editors September 1, 2020, and, in revised form, March 25, 2021, and December 9, 2021.

 2020 Mathematics Subject Classification. Primary 22A25; Secondary 43A65.

