REPRESENTATIONS OF 2-TRANSITIVE LOCALLY COMPACT GROUPS

ROBERT A. BEKES

ABSTRACT. We show that noncompact representations of 2-transitive locally compact groups are irreducible.

INTRODUCTION

Let G be a locally compact group acting on a topological space X such that the map $G \times X \to X$ is continuous. Then there exists a Radon measure μ on X such that the action of G on X can be extended to a continuous unitary representation of G on the Hilbert space $L_2(X, \mu)$. See Folland [5].

The action of G is transitive if for x and y in X there exists g in G such that gx = y. The action of G is 2-transitive if for $x_1 \neq x_2$ and $y_1 \neq y_2$ in X there exists g in G such that $gx_1 = y_1$ and $gx_2 = y_2$.

Assume that G acts 2-transitively on X. If G is finite, using Burnside's Lemma, the unitary representation of G on X splits into two subrepresentations, the identity representation and an irreducible representation orthogonal to the identity representation; see Serre [6, Section 2.3, problem 2.6]. For infinite discrete G and X, Chernoff [2] showed that the unitary representation of G on X is irreducible. The purpose of this paper is to show that for noncompact G and X the unitary representation of G on X is irreducible.

1. Noncompact G and X

In this section we prove Theorem 1:

Theorem 1. Let G be a noncompact nondiscrete locally compact and σ -compact topological transformation group acting faithfully and 2-transitively on a locally compact noncompact not totally disconnected space X. Then the unitary representation of G on the Hilbert space $L_2(X, \mu)$ is irreducible.

Throughout this section G and X satisfy the hypothesis of Theorem 1 and all group operations are written multiplicatively.

Let H be the stabilizer of a point $o \in X$. Then H acts transitively on $X \setminus \{o\}$. By Theorem C in Kramer [5], X carries the structure of a finite dimensional vector space, with basepoint o = 0. The group H is a matrix group, acting transitively on the set of nonzero vectors. The group G is then the semi-direct product $G = H \ltimes X$, in its natural action on X.

Received by the editors September 1, 2020, and, in revised form, March 25, 2021, and December 9, 2021.

²⁰²⁰ Mathematics Subject Classification. Primary 22A25; Secondary 43A65.

Let f be a continuous function X with compact support and let $h \in H$. Define $\pi(h)f$ on X by $\pi(h)f(x) = \sqrt{\rho(h)^{-1}}f(h^{-1}x)$ where $\rho(h)$ is the absolute value of the determinant of h acting on X. Then $\pi(h)$ can be extended to a unitary operator on the Hilbert space $L_2(X,\mu)$ and the map $h \to \pi(h)$ to a continuous unitary representation of H on $L_2(X,\mu)$. See Folland [4, Section 6.1, pg. 154]. Since $G = H \ltimes X$ we can extend ρ to all of G by $\rho(hx) = \rho(h)$ and so $\rho(g_1g_2) = \rho(g_1)\rho(g_2)$ for $g_1, g_2 \in G$. The unitary representation π can then be extended to all of G by $\pi(g)f(x) = \sqrt{\rho(g)^{-1}}f(g^{-1}x)$.

Lemma 1. Let $x_1 \neq x_2$ in X. Then there exist x_3, x_4, \ldots and $\delta > 0$ such that the x_i are all distinct and for $i \neq j$ there exists $g \in G$ with $gx_i = x_1, gx_j = x_2$, and $\rho(g) \leq \delta$.

Proof. Let π be the unitary representation of G on $L_2(X, \mu)$ defined above. Since G is 2-transitive, there exists a g_0 such that $g_0x_2 = x_1$ and $g_0x_1 = x_2$. Let $\delta = \rho(g_0)$. Suppose we have $x_1, x_2, x_3, \ldots, x_n$ such that for $i \neq j$ there is $g \in G$ with $gx_i = x_1, gx_j = x_2$, and $\rho(g) \leq \delta$. Choose x_{n+1} as follows: For each $1 \leq i < n$ let H_i be the stabilizer of x_i . Since G is 2-transitive, $X = \{gx_n \mid g \in H_i\}$. Let $A = \{gx_n \mid \rho(g) \geq 1\}$. Then A has nonempty interior and so $\mu(A) > 0$. Therefore also $\mu(A \setminus \{x_1, \ldots, x_n\}) > 0$. Choose $x_{n+1} \in A \setminus \{x_1, \ldots, x_n\}$. Then for each $1 \leq i < n$ there exists g_i such that $x_{n+1} = g_ix_n, g_ix_i = x_i$, and $\rho(g_i) \geq 1$. So $g_i^{-1}x_{n+1} = x_n, g_i^{-1}x_i = x_i$, and $\rho(g_i) \geq 1$. Therefore $\rho(g_i^{-1}) = \rho(g_i)^{-1} \leq 1$. By the choice of $x_1, x_2, x_3, \ldots, x_n$, there exists g' such that $g'x_n = x_2, g'x_i = x_1$, and $\rho(g) = \rho(g'g_i^{-1}) = \rho(g')\rho(g_i^{-1}) \leq \delta$. Therefore the set $x_1, x_2, x_3, \ldots, x_n, x_{n+1}$ has the desired property.

Proof of Theorem 1. Let $\langle , , \rangle$ be the inner product on $L_2(X,\mu)$. Let U be a measurable set in X with compact closure. Then $\mu(U) < \infty$. Let x_1 and x_2 be such that $x_1U \simeq x_1 + U$ and $x_2U \simeq x_2 + U$ are disjoint. Using Lemma 1 we get distinct x_1, x_2, x_3, \ldots in X and $\delta > 0$ such that for $i \neq j$ there exists $g_{ij} \in G$ with $g_{ij}x_i = x_1, g_{ij}x_j = x_2$ and $\rho(g_{ij}) \leq \delta$. Therefore $g_{ij}(x_iU) = (g_{ij}x_i)U = x_1U$, $g_{ij}(x_jU) = (g_{ij}x_j)U = x_2U$, and so $\{x_iU\}$ is a sequence of disjoint subsets.

For any subset W of X let ξ_W denote the characteristic function of W. Let $f_n = \sum_{i=1}^n c_i \xi_{x_i U}$ with $c_i \ge 0$. Since X acts transitively on itself, there exists $v_i \in X$ such that $v_i x_i = x_1$. Since $\rho \equiv 1$ on X, $\mu(x_i U) = \mu(x_1 U)$. Therefore $\langle f_n, f_n \rangle = \sum_{i=1}^n c_i^2 \mu(x_1 U)$. Let T be a positive intertwining operator for the action π of G on X. Then

$$\langle T\xi_{x_iU}, \xi_{x_iU} \rangle = \langle \pi(v_i)T\xi_{x_iU}, \pi(v_i)\xi_{x_iU} \rangle$$
$$= \langle T\xi_{v_ix_iU}, \xi_{v_ix_iU} \rangle$$
$$= \langle T\xi_{x_1U}, \xi_{x_1U} \rangle$$

and for $i \neq j$,

$$\langle T\xi_{x_iU}, \xi_{x_jU} \rangle = \langle \pi(g_{ij})T\xi_{x_iU}, \pi(g_{ij})\xi_{x_jU} \rangle$$

= $\rho(g_{ij})^{-1} \langle T\xi_{g_{ij}x_iU}, \xi_{g_{ij}x_jU} \rangle$
= $\rho(g_{ij})^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle.$

Therefore

(1)

$$\langle Tf_n, f_n \rangle = \sum_{i=1}^n c_i^2 \langle T\xi_{x_iU}, \xi_{x_iU} \rangle + \sum_{i \neq j} c_i c_j \langle T\xi_{x_iU}, \xi_{x_jU} \rangle$$

$$= \sum_{i=1}^n c_i^2 \langle T\xi_{x_1U}, \xi_{x_1U} \rangle + \sum_{i \neq j} c_i c_j \rho(g_{ij})^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle.$$

Since T is positive $\langle T\xi_{x_1U}, \xi_{x_2U} \rangle$ is real. If $\langle T\xi_{x_1U}, \xi_{x_2U} \rangle \ge 0$, from (1) we get

(2)

$$\langle Tf_n, f_n \rangle \geq \sum_{i \neq j} c_i c_j \rho(g_{ij})^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle$$

$$\geq \left[\sum_{i \neq j} c_i c_j \delta^{-1} \right] \langle T\xi_{x_1U}, \xi_{x_2U} \rangle$$

$$= \left[\left[\sum_{i=1}^n c_i \right]^2 - \sum_{i=1}^n c_i^2 \right] \delta^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle.$$

Now let $c_i = \frac{1}{i}$ and $f = \sum_{i=1}^{\infty} c_i \xi_{x_i U}$. Then since $\sum_{i=1}^{\infty} c_i^2 < \infty$ we have $f \in L_2(X,\mu)$ and $\lim_{n\to\infty} \langle Tf_n, f_n \rangle = \langle Tf, f \rangle < \infty$. Since $\sum_{i=1}^{\infty} c_i = \infty$, letting $n \to \infty$ in (2) we must have $\langle T\xi_{x_1 U}, \xi_{x_2 U} \rangle = 0$.

If $\langle T\xi_{x_1U}, \xi_{x_2U} \rangle \leq 0$, from (1) we get

$$\langle Tf_n, f_n \rangle = \sum_{i=1}^n c_i^2 \langle T\xi_{x_1U}, \xi_{x_1U} \rangle + \sum_{i \neq j} c_i c_j \rho(g_{ij})^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle$$

$$\leq \sum_{i=1}^n c_i^2 \langle T\xi_{x_1U}, \xi_{x_1U} \rangle + \sum_{i \neq j} c_i c_j \delta^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle$$

$$= \sum_{i=1}^n c_i^2 \langle T\xi_{x_1U}, \xi_{x_1U} \rangle + \left[\left[\sum_{i=1}^n c_i \right]^2 - \sum_{i=1}^n c_i^2 \right] \delta^{-1} \langle T\xi_{x_1U}, \xi_{x_2U} \rangle$$

As above, let $c_i = \frac{1}{i}$. Then $\sum_{i=1}^{\infty} c_i^2 < \infty$, $\sum_{i=1}^{\infty} c_i = \infty$, and $\lim_{n \to \infty} \langle Tf_n, f_n \rangle = \langle Tf, f \rangle < \infty$. So with $\langle T\xi_{x_1U}, \xi_{x_2U} \rangle \leq 0$, letting $n \to \infty$ in (3) we must have $\langle T\xi_{x_1U}, \xi_{x_2U} \rangle = 0$. Therefore if $\mu(U) < \infty$, $\langle T\xi_{x_1U}, \xi_{x_2U} \rangle = 0$ when x_1U and x_2U are disjoint.

Since X is homeomorphic with \mathbb{R}^n , there is a sequence $\{U_k\}_{k=1}^{\infty}$ of subsets of X with $\mu(U_k) \to 0$ such that each U_k is the disjoint union of U_{k+1} and a translate of U_{k+1} and finite linear combinations of characteristic functions of disjoint translates of U_k , $k \ge 1$, are dense in $L_2(X, \mu)$.

Now suppose $W = U \cup xU$ where $0 < \mu(U) < \infty$ and U and xU are disjoint. Then by the above argument, $\langle T\xi_U, \xi_{xU} \rangle = \langle T\xi_{xU}, \xi_U \rangle = 0$. There exists v in X such that v(xU) = U. Since $\rho \equiv 1$ on X, we also get

$$\langle T\xi_{xU}, \xi_{xU} \rangle = \langle \pi(v)T\xi_{xU}, \pi(v)\xi_{xU} \rangle = \langle T\xi_{v(xU)}, \xi_{v(xU)} \rangle = \langle T\xi_{U}, \xi_{U} \rangle$$

Let

$$\lambda = \frac{\langle T\xi_W, \xi_W \rangle}{\mu(W)}.$$

434

Then

$$\lambda = \frac{\langle T\xi_U, \xi_U \rangle + \langle T\xi_{xU}, \xi_{xU} \rangle}{2\mu(U)} = \frac{\langle T\xi_U, \xi_U \rangle}{\mu(U)}$$

So for any such decomposition, λ is independent of U and W and so $\langle T\xi_W, \xi_W \rangle = \lambda \langle \xi_W, \xi_W \rangle$ and $\langle T\xi_U, \xi_U \rangle = \lambda \langle \xi_U, \xi_U \rangle$. Therefore $\langle T\xi_{U_k}, \xi_{U_k} \rangle = \lambda \langle \xi_{U_k}, \xi_{U_k} \rangle$ for all k and so $T = \lambda I$. It then follows that the representation π is irreducible.

By Theorem 1, the noncompact representations of the 2-transitive groups classified by Tits in [7] are all irreducible. For a complete classification see Kramer [5, Theorem 5.14 and 6.17].

Examples. Let G be the ax + b group acting on \mathbb{R} by $x \mapsto ax + b$ where $a \neq 0$. If $x_1 \neq x_2$ and $y_1 \neq y_2$ the system $\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ has a solution. Therefore the action of G is 2-transitive on \mathbb{R} , see Conrad [3, example 4.3]. By Theorem 1, the unitary representation of G on $L_2(\mathbb{R}, \mu)$ is irreducible. This result also follows from the representation theory of semi-direct products, see Folland [4, Section 6.7, pg. 189].

Some examples from Kramer [5, Theorem 5.14 and 6.17] of groups acting 2transitively and hence irreducibly on $X \cong \mathbb{R}^n$, are $G = \mathrm{SO}(n) \cdot \mathbb{R}_{>0} \ltimes \mathbb{R}^n$ and $G = \mathrm{SL}_n(\mathbb{R}) \ltimes \mathbb{R}^n$ with $n \ge 3$, and $G = \mathrm{Sp}(n) \cdot \mathbb{C}^* \ltimes \mathbb{R}^n$ and $G = \mathrm{Sp}_{2n}(\mathbb{R}) \ltimes \mathbb{R}^n$ with $n \ge 2$.

The argument in the proof of Theorem 1 simplifies for infinite discrete groups acting on an infinite discrete set X. To prove irreducibility, start by selecting distinct x_1, x_2, \ldots in X and replacing $x_i U$ by the singleton $\{x_i\}$ and W with $\{x_i, x_1\}$. This case is proved in Chernoff [2].

For example let G be the group of permutations on \mathbb{Z} that move only a finite number of integers. Then G acts 2-transitively and so the unitary representation of G on $l_2(\mathbb{Z}, \mu)$ is irreducible.

2. Compact X

Suppose G is a locally compact group acting 2-transitively on a compact topological space X. Let π be the unitary representation of G on the Hilbert space $L_2(X,\mu)$. Unlike the situation for finite groups, π restricted to the orthogonal compliment of the constant functions in $L_2(X,\mu)$ may not be irreducible as the following example illustrates.

Example. Let $G = \operatorname{SL}_2(\mathbb{R})$ and $X = \mathbb{RP}^1$, the real projective line. Then it is shown in Conrad [3, Theorem 4.21] that the action of G on X is 2-transitive. It follows from Casselman [1, page 16] that $X \cong G/B$ where B is the Borel subgroup of G and the representation on X is, via normalized induction, $\operatorname{Ind}_B^G \delta_B^{-1/2}$ where $\delta \begin{bmatrix} t & x \\ 0 & t^{-1} \end{bmatrix} = t^2$. By Casselman [1, Proposition 8.7] with s = -1, m = 1, and n = 0, the orthogonal complement of the projection onto the space of constant functions on X splits into two infinite dimensional subrepresentations.

If G is compact, let H be the stabilizer of a point $o \in X$. Then H is also compact. But H acts transitively on the open set $X \setminus \{o\}$, so $X \setminus \{o\}$ is clopen. Therefore $\{o\}$ is open and so X is discrete and hence finite.

ROBERT A. BEKES

Acknowledgments

I would like to thank Kenneth A. Ross for his critique of this paper, Stephen DeBacker for the reference to Casselman [1], and the reference for helpful suggestions.

References

- Bill Casselman, Analysis on SL(2) representations of SL₂(R), https://pdfs. semanticscholar.org/3556/1bd7456d3fa2892d087e497472109a993f1f.pdf, 2013.
- Paul R. Chernoff, Irreducible representations of infinite-dimensional transformation groups and Lie algebras. I, J. Funct. Anal. 130 (1995), no. 2, 255–282, DOI 10.1006/jfan.1995.1069. MR1335380
- [3] Keith Conrad, Transitive group actions, https://www.math.uconn.edu/~kconrad/blurbs/ grouptheory/transitive.pdf, 2009.
- [4] Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR1397028
- [5] Linus Kramer, Two-transitive Lie groups, J. Reine Angew. Math. 563 (2003), 83–113, DOI 10.1515/crll.2003.085. MR2009240
- [6] Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR0450380
- J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie (French), Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8° 29 (1955), no. 3, 268. MR76286

Department of Mathematics and Computer Science, Santa Clara University, Santa Clara, California95053

Email address: rbekes@scu.edu