Representations of 2-transitive locally compact groups
HTML articles powered by AMS MathViewer
- by Robert A. Bekes
- Represent. Theory 26 (2022), 432-436
- DOI: https://doi.org/10.1090/ert/607
- Published electronically: March 25, 2022
- PDF | Request permission
Abstract:
We show that noncompact representations of 2-transitive locally compact groups are irreducible.References
- Bill Casselman, Analysis on $\operatorname {SL}(2)$ representations of $\operatorname {SL}_2(\mathbb {R})$, https://pdfs.semanticscholar.org/3556/1bd7456d3fa2892d087e497472109a993f1f.pdf, 2013.
- Paul R. Chernoff, Irreducible representations of infinite-dimensional transformation groups and Lie algebras. I, J. Funct. Anal. 130 (1995), no. 2, 255–282. MR 1335380, DOI 10.1006/jfan.1995.1069
- Keith Conrad, Transitive group actions, https://www.math.uconn.edu/~kconrad/blurbs/grouptheory/transitive.pdf, 2009.
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- Linus Kramer, Two-transitive Lie groups, J. Reine Angew. Math. 563 (2003), 83–113. MR 2009240, DOI 10.1515/crll.2003.085
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380, DOI 10.1007/978-1-4684-9458-7
- J. Tits, Sur certaines classes d’espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8$^\circ$ 29 (1955), no. 3, 268 (French). MR 76286
Bibliographic Information
- Robert A. Bekes
- Affiliation: Department of Mathematics and Computer Science, Santa Clara University, Santa Clara, California 95053
- MR Author ID: 329637
- Email: rbekes@scu.edu
- Received by editor(s): September 1, 2020
- Received by editor(s) in revised form: March 25, 2021, and December 9, 2021
- Published electronically: March 25, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 432-436
- MSC (2020): Primary 22A25; Secondary 43A65
- DOI: https://doi.org/10.1090/ert/607
- MathSciNet review: 4400092