An integral second fundamental theorem of invariant theory for partition algebras
HTML articles powered by AMS MathViewer
- by Chris Bowman, Stephen Doty and Stuart Martin PDF
- Represent. Theory 26 (2022), 437-454 Request permission
Abstract:
We prove that the kernel of the action of the group algebra of the Weyl group acting on tensor space (via restriction of the action from the general linear group) is a cell ideal with respect to the alternating Murphy basis. This provides an analogue of the second fundamental theory of invariant theory for the partition algebra over an arbitrary commutative ring and proves that the centraliser algebras of the partition algebra are cellular. We also prove similar results for the half partition algebras.References
- Georgia Benkart and Tom Halverson, Partition algebras $\mathsf {P}_k(n)$ with $2k>n$ and the fundamental theorems of invariant theory for the symmetric group $\mathsf {S}_n$, J. Lond. Math. Soc. (2) 99 (2019), no. 1, 194–224. MR 3909254, DOI 10.1112/jlms.12175
- Georgia Benkart and Tom Halverson, Partition algebras and the invariant theory of the symmetric group, Recent trends in algebraic combinatorics, Assoc. Women Math. Ser., vol. 16, Springer, Cham, 2019, pp. 1–41. MR 3969570, DOI 10.1007/978-3-030-05141-9_{1}
- C. Bowman, M. De Visscher, and R. Orellana, The partition algebra and the Kronecker coefficients, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3647–3667. MR 3314819, DOI 10.1090/S0002-9947-2014-06245-4
- Chris Bowman, Stephen Doty, and Stuart Martin, Integral Schur–Weyl duality for partition algebras (2018, Preprint).
- C. Bowman, S. Doty, and S. Martin, Integral Schur–Weyl duality for partition algebras, Algebr. Comb. (to appear, 2022).
- Christopher Bowman, John Enyang, and Frederick M. Goodman, The cellular second fundamental theorem of invariant theory for classical groups, Int. Math. Res. Not. IMRN 9 (2020), 2626–2683. MR 4095421, DOI 10.1093/imrn/rny079
- Jonathan Comes and Victor Ostrik, On blocks of Deligne’s category $\underline \textrm {Re}\textrm {p}(S_t)$, Adv. Math. 226 (2011), no. 2, 1331–1377. MR 2737787, DOI 10.1016/j.aim.2010.08.010
- Jonathan Comes and Victor Ostrik, On Deligne’s category $\underline \textrm {Re}\textrm {p}^{ab}(S_d)$, Algebra Number Theory 8 (2014), no. 2, 473–496. MR 3212864, DOI 10.2140/ant.2014.8.473
- Jonathan Comes and Benjamin Wilson, Deligne’s category $\underline {\rm {Rep}}(GL_\delta )$ and representations of general linear supergroups, Represent. Theory 16 (2012), 568–609. MR 2998810, DOI 10.1090/S1088-4165-2012-00425-3
- P. Deligne, La catégorie des représentations du groupe symétrique $S_t$, lorsque $t$ n’est pas un entier naturel, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 209–273 (French, with English and French summaries). MR 2348906
- Stephen Donkin, Cellularity of endomorphism algebras of Young permutation modules, J. Algebra 572 (2021), 36–59. MR 4192817, DOI 10.1016/j.jalgebra.2020.11.022
- S. Doty and K. Nyman, Annihilators of permutation modules, Q. J. Math. 62 (2011), no. 1, 87–102. MR 2774355, DOI 10.1093/qmath/hap020
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- Gustav Lehrer and Ruibin Zhang, The second fundamental theorem of invariant theory for the orthogonal group, Ann. of Math. (2) 176 (2012), no. 3, 2031–2054. MR 2979865, DOI 10.4007/annals.2012.176.3.12
- Tom Halverson and Arun Ram, Partition algebras, European J. Combin. 26 (2005), no. 6, 869–921. MR 2143201, DOI 10.1016/j.ejc.2004.06.005
- Martin Härterich, Murphy bases of generalized Temperley-Lieb algebras, Arch. Math. (Basel) 72 (1999), no. 5, 337–345. MR 1680384, DOI 10.1007/s000130050341
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828, DOI 10.1007/BFb0067708
- V. F. R. Jones, The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 259–267. MR 1317365
- Paul Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1103994, DOI 10.1142/0983
- Paul Martin, Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications 3 (1994), no. 1, 51–82. MR 1265453, DOI 10.1142/S0218216594000071
- P. P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A 33 (2000), no. 19, 3669–3695. MR 1768036, DOI 10.1088/0305-4470/33/19/304
- P. Martin and D. Woodcock, The partition algebras and a new deformation of the Schur algebras, J. Algebra 203 (1998), no. 1, 91–124. MR 1620713, DOI 10.1006/jabr.1997.7164
- G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra 152 (1992), no. 2, 492–513. MR 1194316, DOI 10.1016/0021-8693(92)90045-N
- G. E. Murphy, The representations of Hecke algebras of type $A_n$, J. Algebra 173 (1995), no. 1, 97–121. MR 1327362, DOI 10.1006/jabr.1995.1079
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
Additional Information
- Chris Bowman
- Affiliation: Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom
- MR Author ID: 922280
- Email: Chris.Bowman-Scargill@york.ac.uk
- Stephen Doty
- Affiliation: Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois 60660
- MR Author ID: 59395
- ORCID: 0000-0003-3927-3009
- Email: doty@math.luc.edu
- Stuart Martin
- Affiliation: DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 270122
- ORCID: 0000-0002-7424-8397
- Email: S.Martin@dpmms.cam.ac.uk
- Received by editor(s): October 28, 2018
- Received by editor(s) in revised form: July 5, 2021
- Published electronically: April 1, 2022
- Additional Notes: The first author was supported by funding from EPSRC fellowship grant EP/V00090X/1.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 437-454
- MSC (2020): Primary 20C30, 20G05, 20C20
- DOI: https://doi.org/10.1090/ert/593
- MathSciNet review: 4403137