On Donkin’s tilting module conjecture I: lowering the prime
HTML articles powered by AMS MathViewer
- by Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen and Paul Sobaje
- Represent. Theory 26 (2022), 455-497
- DOI: https://doi.org/10.1090/ert/608
- Published electronically: April 4, 2022
- PDF | Request permission
Abstract:
In this paper the authors provide a complete answer to Donkin’s Tilting Module Conjecture for all rank $2$ semisimple algebraic groups and $\operatorname {SL}_{4}(k)$ where $k$ is an algebraically closed field of characteristic $p>0$. In the process, new techniques are introduced involving the existence of $(p,r)$-filtrations, Lusztig’s character formula, and the $G_{r}$T-radical series for baby Verma modules.References
- Pramod N. Achar, Shotaro Makisumi, Simon Riche, and Geordie Williamson, Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32 (2019), no. 1, 261–310. MR 3868004, DOI 10.1090/jams/905
- Henning Haahr Andersen, A sum formula for tilting filtrations, J. Pure Appl. Algebra 152 (2000), no. 1-3, 17–40. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). MR 1783982, DOI 10.1016/S0022-4049(99)00141-3
- Henning Haahr Andersen, $p$-filtrations and the Steinberg module, J. Algebra 244 (2001), no. 2, 664–683. MR 1859043, DOI 10.1006/jabr.2000.8745
- Henning Haahr Andersen, $p$-filtrations of dual Weyl modules, Adv. Math. 352 (2019), 231–245. MR 3959655, DOI 10.1016/j.aim.2019.05.028
- Henning Haahr Andersen and Masaharu Kaneda, Loewy series of modules for the first Frobenius kernel in a reductive algebraic group, Proc. London Math. Soc. (3) 59 (1989), no. 1, 74–98. MR 997252, DOI 10.1112/plms/s3-59.1.74
- John W. Ballard, Injective modules for restricted enveloping algebras, Math. Z. 163 (1978), no. 1, 57–63. MR 510324, DOI 10.1007/BF01214444
- Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, Cornelius Pillen, Leonard L. Scott, and David Stewart, Bounding cohomology for finite groups and Frobenius kernels, Algebr. Represent. Theory 18 (2015), no. 3, 739–760. MR 3357946, DOI 10.1007/s10468-014-9514-7
- C. P. Bendel, D. K. Nakano, C. Pillen, and P. Sobaje, On tensoring with the Steinberg representation, Transform. Groups 25 (2020), no. 4, 981–1008. MR 4166678, DOI 10.1007/s00031-019-09530-x
- Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen, and Paul Sobaje, Counterexamples to the tilting and $(p,r)$-filtration conjectures, J. Reine Angew. Math. 767 (2020), 193–202. MR 4160306, DOI 10.1515/crelle-2019-0036
- Christopher P. Bendel, Daniel K. Nakano, Cornelius Pillen, and Paul Sobaje, On Donkin’s tilting module conjecture II: counterexamples, Preprint, arXiv:2107.11615, 2021.
- Edward T. Cline, Brian J. Parshall, and Leonard L. Scott, Reduced standard modules and cohomology, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5223–5261. MR 2515810, DOI 10.1090/S0002-9947-09-04633-9
- Stephen Donkin, Some remarks on the uniqueness of liftings of principal indecomposable modules for infinitesimal subgroups of semisimple groups, J. Algebra 475 (2017), 361–369. MR 3612475, DOI 10.1016/j.jalgebra.2016.08.025
- Jan Hesselvig Hagelskjaer, Induced modules for algebraic groups, Speciale, Aarhus University, 1983.
- James E. Humphreys, Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, vol. 326, Cambridge University Press, Cambridge, 2006. MR 2199819
- Jens C. Jantzen, Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren, Math. Z. 140 (1974), 127–149. MR 432773, DOI 10.1007/BF01213951
- Jens C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. Reine Angew. Math. 317 (1980), 157–199 (German). MR 581341, DOI 10.1515/crll.1980.317.157
- Jens C. Jantzen, First cohomology groups for classical Lie algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 289–315. MR 1112165
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Tobias Kildetoft and Daniel K. Nakano, On good $(p,r)$-filtrations for rational $G$-modules, J. Algebra 423 (2015), 702–725. MR 3283737, DOI 10.1016/j.jalgebra.2014.09.030
- Zong Zhu Lin, Extensions between simple modules for Frobenius kernels, Math. Z. 207 (1991), no. 4, 485–499. MR 1119953, DOI 10.1007/BF02571404
- Frank Lübeck, Tables of weight multiplicities, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/WMSmall/index.html.
- George Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121–164. MR 591724, DOI 10.1016/0001-8708(80)90031-6
- Brian J. Parshall and Leonard L. Scott, On $p$-filtrations of Weyl modules, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 127–158. MR 3338612, DOI 10.1112/jlms/jdu067
- Simon Riche and Geordie Williamson, Tilting modules and the $p$-canonical basis, Astérisque 397 (2018), ix+184 (English, with English and French summaries). MR 3805034
- Simon Riche and Geordie Williamson, Smith-Treumann theory and the linkage principle, arXiv:2003.08522, 2020.
- Paul Sobaje, On $(p,r)$-filtrations and tilting modules, Proc. Amer. Math. Soc. 146 (2018), no. 5, 1951–1961. MR 3767348, DOI 10.1090/proc/13926
- Paul Sobaje, On character formulas for simple and tilting modules, Adv. Math. 369 (2020), 107172, 8. MR 4092982, DOI 10.1016/j.aim.2020.107172
- T. A. Springer, Weyl’s character formula for algebraic groups, Invent. Math. 5 (1968), 85–105. MR 227178, DOI 10.1007/BF01425541
Bibliographic Information
- Christopher P. Bendel
- Affiliation: Department of Mathematics, Statistics and Computer Science, University of Wisconsin-Stout, Menomonie, Wisconsin 54751
- MR Author ID: 618335
- Email: bendelc@uwstout.edu
- Daniel K. Nakano
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 310155
- ORCID: 0000-0001-7984-0341
- Email: nakano@math.uga.edu
- Cornelius Pillen
- Affiliation: Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688
- MR Author ID: 339756
- Email: pillen@southalabama.edu
- Paul Sobaje
- Affiliation: Department of Mathematical Sciences, Georgia Southern University, Statesboro, Georgia 30458
- MR Author ID: 983585
- Email: psobaje@georgiasouthern.edu
- Received by editor(s): July 30, 2021
- Received by editor(s) in revised form: January 11, 2022
- Published electronically: April 4, 2022
- Additional Notes: The research of the first author was supported in part by Simons Foundation Collaboration Grant 317062. The research of the second author was supported in part by NSF grants DMS-1701768 and DMS-2101941. The research of the third author was supported in part by Simons Foundation Collaboration Grant 245236
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 455-497
- MSC (2020): Primary 20J99, 20G05
- DOI: https://doi.org/10.1090/ert/608
- MathSciNet review: 4403659
Dedicated: In memory of James E. Humphreys