On the socles of certain parabolically induced representations of $p$-adic classical groups
HTML articles powered by AMS MathViewer
- by Hiraku Atobe PDF
- Represent. Theory 26 (2022), 515-541 Request permission
Abstract:
In this paper, we consider representations of $p$-adic classical groups parabolically induced from the products of shifted Speh representations and unitary representations of Arthur type of good parity. We describe how to compute the socles (the maximal semisimple subrepresentations) of these representations. As a consequence, we can determine whether these representations are reducible or not. In particular, our results produce many unitary representations, which appear in the complementary series.References
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Hiraku Atobe, Construction of local $A$-packets. Preprint, arXiv:2012.07232v2, 2021.
- Hiraku Atobe and Alberto Mínguez, The explicit Zelevinsky–Aubert duality. Preprint, arXiv:2008.05689v2, 2020.
- Barbara Bošnjak, Representations induced from cuspidal and ladder representations of classical $p$-adic groups, Proc. Amer. Math. Soc. 149 (2021), no. 12, 5081–5091. MR 4327416, DOI 10.1090/proc/15638
- Chris Jantzen, Tempered representations for classical $p$-adic groups, Manuscripta Math. 145 (2014), no. 3-4, 319–387. MR 3268853, DOI 10.1007/s00229-014-0679-5
- Chris Jantzen, Duality for classical $p$-adic groups: the half-integral case, Represent. Theory 22 (2018), 160–201. MR 3868005, DOI 10.1090/ert/519
- Erez Lapid and Alberto Mínguez, On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), no. 4, 2347–2400. MR 3573961, DOI 10.1007/s00029-016-0281-7
- Erez Lapid, Goran Muić, and Marko Tadić, On the generic unitary dual of quasisplit classical groups, Int. Math. Res. Not. 26 (2004), 1335–1354. MR 2046512, DOI 10.1155/S1073792804132832
- Erez Lapid and Marko Tadić, Some results on reducibility of parabolic induction for classical groups, Amer. J. Math. 142 (2020), no. 2, 505–546. MR 4084162, DOI 10.1353/ajm.2020.0014
- Ivan Matić, Reducibility of representations induced from the Zelevinsky segment and discrete series, Manuscripta Math. 164 (2021), no. 3-4, 349–374. MR 4212195, DOI 10.1007/s00229-020-01187-1
- Ivan Matić, Representations induced from the Zelevinsky segment and discrete series in the half-integral case, Forum Math. 33 (2021), no. 1, 193–212. MR 4193483, DOI 10.1515/forum-2020-0054
- Colette Mœglin, Paquets d’Arthur pour les groupes classiques; point de vue combinatoire. Preprint, arXiv:math/0610189v1, 2006.
- C. Mœglin, Multiplicité 1 dans les paquets d’Arthur aux places $p$-adiques, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 333–374 (French, with English summary). MR 2767522, DOI 10.24033/bsmf.1947
- Colette Mœglin, On the combinatorics of A-packets for classical groups. On the Langlands Program: Endoscopy and Beyond, 2019. Available at: https://www.youtube.com/watch?v=x5oLAFbTJfA
- Colette Mœglin and Jean-Loup Waldspurger, La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général, Astérisque 347 (2012), 167–216 (French). Sur les conjectures de Gross et Prasad. II. MR 3155346
- Goran Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157–202. MR 2054843, DOI 10.1007/BF02786631
- Goran Muić, Reducibility of generalized principal series, Canad. J. Math. 57 (2005), no. 3, 616–647. MR 2134404, DOI 10.4153/CJM-2005-025-4
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688, DOI 10.24033/asens.1510
- Marko Tadić, An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 215–252. MR 1181278, DOI 10.1090/S0273-0979-1993-00372-0
- Marko Tadić, Irreducibility criterion for representations induced by essentially unitary ones (case of non-Archimedean $GL(n,\scr A)$), Glas. Mat. Ser. III 49(69) (2014), no. 1, 123–161. MR 3224483, DOI 10.3336/gm.49.1.11
- Marko Tadić, Unitarizability in corank three for classical $p$-adic groups. Mem. Amer. Math. Soc., to appear.
- Marko Tadić, On unitarizability and Arthur packets. Preprint, arXiv:2010.14899v1, 2020.
- Bin Xu, On the cuspidal support of discrete series for $p$-adic quasisplit $Sp(N)$ and $SO(N)$, Manuscripta Math. 154 (2017), no. 3-4, 441–502. MR 3713922, DOI 10.1007/s00229-017-0923-x
- Bin Xu, On Mœglin’s parametrization of Arthur packets for $p$-adic quasisplit $Sp(N)$ and $SO(N)$, Canad. J. Math. 69 (2017), no. 4, 890–960. MR 3679701, DOI 10.4153/CJM-2016-029-3
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Additional Information
- Hiraku Atobe
- Affiliation: Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
- MR Author ID: 1105443
- Email: atobe@math.sci.hokudai.ac.jp
- Received by editor(s): September 28, 2021
- Received by editor(s) in revised form: February 20, 2022
- Published electronically: April 25, 2022
- Additional Notes: The author was supported by JSPS KAKENHI Grant Number 19K14494.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 515-541
- MSC (2020): Primary 22E50; Secondary 22D10
- DOI: https://doi.org/10.1090/ert/612
- MathSciNet review: 4412277