Derived equivalences and equivariant Jordan decomposition
HTML articles powered by AMS MathViewer
- by Lucas Ruhstorfer
- Represent. Theory 26 (2022), 542-584
- DOI: https://doi.org/10.1090/ert/605
- Published electronically: April 27, 2022
- PDF | Request permission
Abstract:
The Bonnafé–Rouquier equivalence can be seen as a modular analogue of Lusztig’s Jordan decomposition for groups of Lie type. In this paper, we show that this equivalence can be lifted to include automorphisms of the finite group of Lie type. Moreover, we prove the existence of a local version of this equivalence which satisfies similar properties.References
- D. J. Benson, Representations and cohomology. I, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. Basic representation theory of finite groups and associative algebras. MR 1644252
- Cédric Bonnafé, Jean-François Dat, and Raphaël Rouquier, Derived categories and Deligne-Lusztig varieties II, Ann. of Math. (2) 185 (2017), no. 2, 609–670. MR 3612005, DOI 10.4007/annals.2017.185.2.5
- Cédric Bonnafé, Quasi-isolated elements in reductive groups, Comm. Algebra 33 (2005), no. 7, 2315–2337. MR 2153225, DOI 10.1081/AGB-200063602
- Cédric Bonnafé and Raphaël Rouquier, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 1–59 (French). MR 2010739, DOI 10.1007/s10240-003-0013-3
- Cédric Bonnafé and Raphaël Rouquier, Coxeter orbits and modular representations, Nagoya Math. J. 183 (2006), 1–34. MR 2253885, DOI 10.1017/S0027763000009259
- Michel Broué, Equivalences of blocks of group algebras, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 1–26. MR 1308978, DOI 10.1007/978-94-017-1556-0_{1}
- Michel Broué and Jean Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989), 56–67 (French). MR 983059, DOI 10.1515/crll.1989.395.56
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- Marc Cabanes and Britta Späth, Equivariance and extendibility in finite reductive groups with connected center, Math. Z. 275 (2013), no. 3-4, 689–713. MR 3127033, DOI 10.1007/s00209-013-1156-7
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- François Digne, Descente de Shintani et restriction des scalaires, J. London Math. Soc. (2) 59 (1999), no. 3, 867–880 (French, with English summary). MR 1709085, DOI 10.1112/S0024610799007516
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841, DOI 10.1017/CBO9781139172417
- Morton E. Harris, Splendid derived equivalences for blocks of finite groups, J. London Math. Soc. (2) 60 (1999), no. 1, 71–82. MR 1721816, DOI 10.1112/S0024610799007619
- Radha Kessar and Gunter Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. (2) 178 (2013), no. 1, 321–384. MR 3043583, DOI 10.4007/annals.2013.178.1.6
- Gunter Malle, Generalized Deligne-Lusztig characters, J. Algebra 159 (1993), no. 1, 64–97. MR 1231204, DOI 10.1006/jabr.1993.1147
- Gunter Malle and Britta Späth, Characters of odd degree, Ann. of Math. (2) 184 (2016), no. 3, 869–908. MR 3549625, DOI 10.4007/annals.2016.184.3.6
- Gunter Malle and Donna Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737, DOI 10.1017/CBO9780511994777
- Andrei Marcus, On equivalences between blocks of group algebras: reduction to the simple components, J. Algebra 184 (1996), no. 2, 372–396. MR 1409219, DOI 10.1006/jabr.1996.0265
- Hirosi Nagao and Yukio Tsushima, Representations of finite groups, Academic Press, Inc., Boston, MA, 1989. Translated from the Japanese. MR 998775
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- Gabriel Navarro, Pham Huu Tiep, and Alexandre Turull, Brauer characters with cyclotomic field of values, J. Pure Appl. Algebra 212 (2008), no. 3, 628–635. MR 2365337, DOI 10.1016/j.jpaa.2007.06.019
- Lluís Puig, Basic Rickard equivalences between Brauer blocks, Birkhäuser Basel, Basel, 1999.
- Jeremy Rickard, Finite group actions and étale cohomology, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 81–94 (1995). MR 1320604, DOI 10.1007/BF02698896
- Jeremy Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3) 72 (1996), no. 2, 331–358. MR 1367082, DOI 10.1112/plms/s3-72.2.331
- Raphaël Rouquier, The derived category of blocks with cyclic defect groups, Derived equivalences for group rings, Lecture Notes in Math., vol. 1685, Springer, Berlin, 1998, pp. 199–220. MR 1649846, DOI 10.1007/BFb0096376
- Raphaël Rouquier, Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (Charlottesville, VA, 1998) de Gruyter, Berlin, 2001, pp. 101–146. MR 1889341
- Raphaël Rouquier, Complexes de chaînes étales et courbes de Deligne-Lusztig, J. Algebra 257 (2002), no. 2, 482–508 (French, with English summary). MR 1947973, DOI 10.1016/S0021-8693(02)00530-6
- Lucas Ruhstorfer, Jordan decomposition for the Alperin-McKay conjecture, Adv. Math. 394 (2022), Paper No. 108031, 30. MR 4355731, DOI 10.1016/j.aim.2021.108031
- Lucas Ruhstorfer, Jordan decomposition for the Alperin-McKay conjecture. Doctoral thesis, Bergische Universität Wuppertal, 2020.
- T. A. Springer, Linear algebraic groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. MR 2458469
- Robert Steinberg, Lectures on Chevalley groups, University Lecture Series, vol. 66, American Mathematical Society, Providence, RI, 2016. Notes prepared by John Faulkner and Robert Wilson; Revised and corrected edition of the 1968 original [ MR0466335]; With a foreword by Robert R. Snapp. MR 3616493, DOI 10.1090/ulect/066
- Jay Taylor, Action of automorphisms on irreducible characters of symplectic groups, J. Algebra 505 (2018), 211–246. MR 3789911, DOI 10.1016/j.jalgebra.2018.03.008
- Jay Taylor, The structure of root data and smooth regular embeddings of reductive groups, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 2, 523–552. MR 3935811, DOI 10.1017/s0013091518000597
- Jacques Thévenaz, $G$-algebras and modular representation theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications.
Bibliographic Information
- Lucas Ruhstorfer
- Affiliation: Fachbereich Mathematik, TU Kaiserslautern, 67653 Kaiserslautern, Germany
- MR Author ID: 1379611
- Email: ruhstorfer@mathematik.uni-kl.de
- Received by editor(s): October 9, 2020
- Received by editor(s) in revised form: August 3, 2021, and September 20, 2021
- Published electronically: April 27, 2022
- Additional Notes: This material was supported by the NSF under Grant DMS-1440140 while the author was in residence at the MSRI, Berkeley CA. The research was conducted in the framework of the research training group GRK 2240: Algebro-geometric Methods in Algebra, Arithmetic and Topology, which was funded by the DFG
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 542-584
- MSC (2020): Primary 20C33, 20C20
- DOI: https://doi.org/10.1090/ert/605
- MathSciNet review: 4413349