A proof of the polynomial conjecture for restrictions of nilpotent lie groups representations
HTML articles powered by AMS MathViewer
- by Ali Baklouti, Hidenori Fujiwara and Jean Ludwig PDF
- Represent. Theory 26 (2022), 616-634 Request permission
Abstract:
Let $G$ be a connected and simply connected nilpotent Lie group, $K$ an analytic subgroup of $G$ and $\pi$ an irreducible unitary representation of $G$ whose coadjoint orbit of $G$ is denoted by $\Omega (\pi )$. Let $\mathscr U(\mathfrak g)$ be the enveloping algebra of ${\mathfrak g}_{\mathbb C}$, $\mathfrak g$ designating the Lie algebra of $G$. We consider the algebra $D_{\pi }(G)^K \simeq \left (\mathscr U(\mathfrak g)/\operatorname {ker}(\pi )\right )^K$ of the $K$-invariant elements of $\mathscr U(\mathfrak g)/\operatorname {ker}(\pi )$. It turns out that this algebra is commutative if and only if the restriction $\pi |_K$ of $\pi$ to $K$ has finite multiplicities (cf. Baklouti and Fujiwara [J. Math. Pures Appl. (9) 83 (2004), pp. 137-161]). In this article we suppose this eventuality and we provide a proof of the polynomial conjecture asserting that $D_{\pi }(G)^K$ is isomorphic to the algebra $\mathbb C[\Omega (\pi )]^K$ of $K$-invariant polynomial functions on $\Omega (\pi )$. The conjecture was partially solved in our previous works (Baklouti, Fujiwara, and Ludwig [Bull. Sci. Math. 129 (2005), pp. 187-209]; J. Lie Theory 29 (2019), pp. 311-341).References
- Jawhar Abdennadher and Jean Ludwig, Disintegrating tensor representations of nilpotent Lie groups, Trans. Amer. Math. Soc. 361 (2009), no. 2, 819–848. MR 2452826, DOI 10.1090/S0002-9947-08-04709-0
- Ali Baklouti, Hidenori Fujiwara, and Jean Ludwig, Representation theory of solvable Lie groups and related topics, Springer Monographs in Mathematics, Springer, Cham, [2021] ©2021. MR 4386100, DOI 10.1007/978-3-030-82044-2
- A. Baklouti and J. Ludwig, Invariant differential operators on certain nilpotent homogeneous spaces, Monatsh. Math. 134 (2001), no. 1, 19–37. MR 1872044, DOI 10.1007/s006050170009
- Ali Baklouti and Hidénori Fujiwara, Opérateurs différentiels associés à certaines représentations unitaires d’un groupe de Lie résoluble exponentiel, Compositio Math. 139 (2003), no. 1, 29–65 (French, with French summary). MR 2024964, DOI 10.1023/B:COMP.0000005080.07125.18
- Ali Baklouti and Hidenori Fujiwara, Commutativité des opérateurs différentiels sur l’espace des représentations restreintes d’un groupe de Lie nilpotent, J. Math. Pures Appl. (9) 83 (2004), no. 1, 137–161 (French, with English and French summaries). MR 2032585, DOI 10.1016/S0021-7824(03)00063-1
- Ali Baklouti, Hidenori Fujiwara, and Jean Ludwig, Analysis of restrictions of unitary representations of a nilpotent Lie group, Bull. Sci. Math. 129 (2005), no. 3, 187–209 (English, with English and French summaries). MR 2126822, DOI 10.1016/j.bulsci.2004.09.001
- Ali Baklouti, Hidenori Fujiwara, and Jean Ludwig, The polynomial conjecture for restrictions of some nilpotent Lie groups representations, J. Lie Theory 29 (2019), no. 2, 311–341. MR 3915543
- P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, and M. Vergne, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, No. 4, Dunod, Paris, 1972. MR 0444836
- Pierre Cartier, Vecteurs différentiables dans les représentations unitaires des groupes de Lie, Séminaire Bourbakt (1974/1975), Exp. No. 454, Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976, pp. 20–34 (French). MR 0460541
- L. Corwin, F. P. Greenleaf, and G. Grélaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc. 304 (1987), no. 2, 549–583. MR 911085, DOI 10.1090/S0002-9947-1987-0911085-6
- Lawrence Corwin and Frederick P. Greenleaf, Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups, Pacific J. Math. 135 (1988), no. 2, 233–267. MR 968611, DOI 10.2140/pjm.1988.135.233
- Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
- L. Corwin and F. P. Greenleaf, Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity, Comm. Pure Appl. Math. 45 (1992), no. 6, 681–748. MR 1162369, DOI 10.1002/cpa.3160450603
- Michel Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 265–288 (French, with English summary). MR 444841, DOI 10.24033/asens.1327
- Hidenori Fujiwara, Représentations monomiales des groupes de Lie nilpotents, Pacific J. Math. 127 (1987), no. 2, 329–352 (French). MR 881763, DOI 10.2140/pjm.1987.127.329
- Hidenori Fujiwara, Représentations monomiales des groupes de Lie résolubles exponentiels, The orbit method in representation theory (Copenhagen, 1988) Progr. Math., vol. 82, Birkhäuser Boston, Boston, MA, 1990, pp. 61–84 (French). MR 1095341
- Hidenori Fujiwara, Sur les restrictions des représentations unitaires des groupes de Lie résolubles exponentiels, Invent. Math. 104 (1991), no. 3, 647–654 (French). MR 1106754, DOI 10.1007/BF01245095
- Fujiwara Hidenori, Sur la conjecture de Corwin-Greenleaf, J. Lie Theory 7 (1997), no. 1, 121–146 (French, with English summary). MR 1450747
- H. Fujiwara, G. Lion, et B. Magneron, Algèbres de fonctions associées aux représentations monomiales des groupes de Lie nilpotents, Prépub. Math. Univ. Paris 13 (2002), 2002-2.
- H. Fujiwara, G. Lion, B. Magneron, and S. Mehdi, A commutativity criterion for certain algebras of invariant differential operators on nilpotent homogeneous spaces, Math. Ann. 327 (2003), no. 3, 513–544. MR 2021028, DOI 10.1007/s00208-003-0464-3
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Niels Vigand Pedersen, On the infinitesimal kernel of irreducible representations of nilpotent Lie groups, Bull. Soc. Math. France 112 (1984), no. 4, 423–467 (English, with French summary). MR 802535, DOI 10.24033/bsmf.2016
- Neils Skovhus Poulsen, On $C^{\infty }$-vectors and intertwining bilinear forms for representations of Lie groups, J. Functional Analysis 9 (1972), 87–120. MR 0310137, DOI 10.1016/0022-1236(72)90016-x
- L. Pukánszky, Leçons sur les représentations des groupes, Monographies de la Société Mathématique de France, No. 2, Dunod, Paris, 1967 (French). MR 0217220
Additional Information
- Ali Baklouti
- Affiliation: Laboratory LAMHA, Faculty of Sciences of Sfax, University of Sfax, Route de Soukra, BP 1171, Sfax 3038, Tunisia
- MR Author ID: 347205
- Email: ali.baklouti@usf.tn
- Hidenori Fujiwara
- Affiliation: Faculté de Science et Technologie pour l’Humanité, Université de Kinki, Iizuka 820-8555, Japan
- Email: fujiwara6913@yahoo.co.jp
- Jean Ludwig
- Affiliation: Institut Elie Cartan de Lorraine, Université de Lorraine, Site de Metz, 3, rue Augustin Fresnel, 57000 Metz, Technopole Metz France
- MR Author ID: 224117
- Email: jean.ludwig@univ-lorraine.fr
- Received by editor(s): February 22, 2021
- Received by editor(s) in revised form: September 8, 2021
- Published electronically: June 2, 2022
- Additional Notes: This research has been partially supported by the DGRSRT through the Research Laboratory LR 11ES52
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 616-634
- MSC (2020): Primary 22E27
- DOI: https://doi.org/10.1090/ert/611
- MathSciNet review: 4433082
Dedicated: This work is dedicated to the memory of Takaaki Nomura