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THE LANGLANDS-SHAHIDI METHOD FOR PAIRS

VIA TYPES AND COVERS

YEONGSEONG JO AND M. KRISHNAMURTHY

Abstract. We compute the local coefficient attached to a pair (π1, π2) of
supercuspidal (complex) representations of the general linear group using the
theory of types and covers à la Bushnell-Kutzko. In the process, we obtain an-
other proof of a well-known formula of Shahidi for the corresponding Plancherel
constant. The approach taken here can be adapted to other situations of arith-
metic interest within the context of the Langlands-Shahidi method, particu-
larly to that of a Siegel Levi subgroup inside a classical group.

1. Introduction

Throughout this paper F will denote a non-archimedean local field with residue
field cardinality q. We fix an additive character ψ which is trivial on pF (the
maximal ideal of the ring of integers oF of F ) but non-trivial on oF . In [20], the
second author with Phil Kutzko outlined a method for calculating the Langlands-
Shahidi local coefficient using types and covers via the example of SL2(F ). In
this paper, we extend that approach to compute the local coefficient Cψ(s, π1×π2)
attached to a pair (π1, π2) of supercuspidal (complex) representations of the general
linear group GLn(F ) and a complex parameter s. This complements the work
of Paskunas and Stevens [24] in that we implement a parallel calculation in the
context of the Langland-Shahidi method. However, the methods employed here,
particularly in the second half of the calculation, are disjoint from that of loc. cit.
due to complications arising from possible poles of a certain intertwining operator.

In general, local coefficient by definition is a constant of proportionality aris-
ing from uniqueness of induced Whittaker models. Shahidi defined the so-called
Langlands-Shahidi (LS) γ-factors inductively (cf. [31, Theorem 3.5]) so that the
local coefficient factorizes as a product of such γ-factors. The local coefficient is
also related to the Plancherel constant (see loc. cit.) which more or less says that
“the square of the local coefficient equals the associated Plancherel constant”. We
recall the precise relation to the Plancherel constant μ(s, π1 × π2) in our situation
in §5.4. From this standpoint, what we achieve here vis-à-vis the work of Bushnell,
Henniart and Kutzko [4] is determine a “sign” of the square root of the Plancherel
constant using types and covers.

On the other hand, Jacquet, Piatetski-Shapiro, and Shalika [16] defined the
Rankin-Selberg γ-factor γ(s, π1 × π2, ψ) via the theory of integral representations.
By definition it is a proportionality factor between two integrals related to each
other by the theory of Fourier transforms. It is known that γ(s, π1 × π2, ψ) is a
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rational function in q−s and can be written in the form

γ(s, π1 × π2, ψ) = ε(s, π1 × π2, ψ)
L(1− s, π̌1 × π̌2)

L(s, π1 × π2)
,

where L(s, π1 × π2) is the Rankin-Selberg local L-function, π̌i, i = 1, 2, denotes the
contragredient representation, and ε(s, π1×π2, ψ) is the local ε-factor – a monomial
of the form

ε(s, π1 × π2, ψ) = ε(0, π1 × π2, ψ)q
−f(π1×π2,ψ)s.

The exponent f(π1×π2, ψ) ∈ Z is called the conductor attached to the pair (π1, π2);
its relation to ψ is given by the equation f(π1 × π2, ψ) = f(π1 × π2)− n2�ψ, where
�ψ is the level of the additive character ψ. By choice, �ψ = 1 for us.

In an influential paper [29], Shahidi proved the equality

(1.1) Cψ(s, π1 × π2) = ωπ2
(−1)nγ(s, π1 × π2, ψ)

after suitably normalizing the measures defining the local coefficient. As a conse-
quence, he obtained a formula for μ(s, π1 × π2): If π1,π2, are unitary, then

(1.2) μ(s, π1 × π2) = qf(π1×π̌2,ψ) L(s, π1 × π̌2)

L(1 + s, π1 × π̌2)

L(−s, π̌2 × π1)

L(1− s, π̌2 × π1)
.

Our goal in this paper is to provide an alternative (algebraic) approach to ob-
taining (1.1) and (1.2) using the theory of types and covers. We believe it opens
the door to proving similar equalities in other contexts and consider the present
paper a first step in that direction. A case in point is comparison of exterior square
local factors obtained from the Langlands-Shahidi method with those obtained via
Bump-Friedberg integrals [8]. The authors plan to investigate this in future papers.

As observed in [20], the first instance of calculating the local coefficient along
the lines proposed here goes back to Casselman and Shalika [10] who computed
local coefficients attached to unramified principal series representations using the
trivial representation of the Iwahori subgroup – a special instance of a “type”. In
this paper, we use the full force of the theory of types à la Bushnell and Kutzko [5]
to compute Cψ(s, π1 × π2). Let us now give a brief overview of the methods used
in this paper and also comment on the organization of its contents.

We take π1 and π2 to be supercuspidal representations that contain the same
simple character. By [5] (also see [7, Section 7]), for i = 1, 2, we may choose maximal
simple types (Ji, λi) contained in πi so that J1 = J2 = J(β, a) is a compact open
subgroup associated to a maximal simple stratum [a, k, 0, β], the representation
λi has a decomposition of the form λi = κ ⊗ τi, where κ is a β-extension and
τi is the inflation of an irreducible cuspidal representation of J(β, a)/J1(β, a). As
observed in [1,24], it is a formal consequence of Mackey’s theorem that we may also
arrange the choice of these maximal simple types so that HomUn(F )∩J(β,a)(ψ, λi) �=
0. Without loss of any generality, we may take π1, π2, to be unitary. Assuming all
this is done, Paskunas and Stevens [24] defined a pair of distinguished Whittaker
functions (W1,W2) in the Whittaker model (w.r.t. ψ) of π1, π2, respectively, that
has many useful properties. We give the necessary definitions and review these
properties in §2.1 and §2.2. We claim no new results here, but the reader may find
our exposition pertaining to these Whittaker functions useful.

Now, consider the maximal Levi subgroup L = GLn(F ) × GLn(F ) inside the
group G = GL2n(F ) and let P = LN be the associated standard parabolic sub-
group. Then (JL, λL), JL = J(β, a)×J(β, a), λL = λ1×λ2, is a type in L associated
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to the L-inertial class of π1 × π2. Let (J ′, λ′) be the corresponding G-cover (we
discuss this in §3) as constructed in [7, Section 7]. This comes equipped with an

injective algebra homomorphism H(L, λL)
jP−→ H(G, λ′) of associated Hecke alge-

bras that realizes parabolic induction. Then one can pass between the category of
smooth representations and the corresponding modules over these algebras which
plays a crucial role in our computation. In §4, we review the work by Paskunas
and Stevens and start our calculation of the local coefficient Cψ(s, π1 × π2) in §5.
We break into two cases: (i) τ1 � τ2 and (ii) τ1 ∼= τ2.

We deal with case (i) in § 5.2. In this situation the cover (J ′, λ′) splits, meaning
the above map jP is an isomorphism. This makes it is easy to determine the effect of
the intertwining operator in question. After suitably conjugating the cover (J ′, λ′)
by a central element in L, we compute both sides of the equation (i.e., (5.2)) defining
the local coefficient using the pair (W1,W2). (This is similar to the approach in
[24].) We partition the relevant integral into “shells” and prove that up to certain
precise volume factors associated with the cover the local coefficient is given as

Cψ(s, π1 × π2) ∼
∫
J(β,a)

W1(�
m
EX)W2(�

m
EX)φm(X)dX.

Here m is so-called numerical invariant (see §2.3) which is closely related to the con-
ductor f(π1×π̌2, ψ) and φm(X) is the additive character given byX �→ ψ(�m

EXn,1).
These put together is the content of Theorem 5.4 from which we can deduce (1.1)
in the case at hand. It is likely that the above integral can be expressed as a “gen-
eralized Gauss sum” using properties of (W1,W2) but we have not pursued it here.
(See [33] for a related discussion.) In any case, we determine the absolute value of
this integral in §5.4 using the local functional equation.

We treat case (ii) in §5.3. Here, the cover (J ′, λ′) is not a split cover and the
intertwining operator is not well-behaved. So we cannot proceed as before, instead
we use the Hecke algebra isomorphism of [5]. It is proved in loc. cit. that the
Hecke algebra H(G, λ′) is isomorphic to the Iwahori Hecke algebra of G′ = GL2(k)
for a suitable field extension k of F . We then use the “generalized spherical vector”
defined in [18] and transport the corresponding Whittaker function across this Hecke
algebra isomorphism using results of Chan and Savin [12,13]. (See Proposition 5.17
for a precise statement.) This reduces the problem of calculating the local coefficient
to the aforementioned computation of Casselman and Shalika. We give the final
expression for the local coefficient in the non-split case in Theorem 5.19. Our
proof involves a careful analysis of the Hecke algebra isomorphism, in particular,
we resolve the sign ambiguities mentioned in [18, Remark 4.2.6]. To conclude, in
§5.4, we deduce (1.2) using certain volume computations.

We expect the simplifying assumption that π1 and π2 belong to the same endo-
class is not necessary. (See [19] for progress in this direction.)

2. Types and Whittaker functions

2.1. Maximal simple types. In this section we review the structure of irreducible
supercuspidal representations of G = GLn(F ) via Bushnell-Kutzko’s theory of
types. The definitive reference for the theory is [5] and we adopt the notation there
with minor modifications. Let A denote the algebra Mn(F ) of F -endomorphisms of
Fn and let a be a hereditary oF -order in A. Let p = pa denote its Jacobson radical,
a two-sided ideal of a. Let U(a) denote the group of units a× and set Uk(a) = 1+pk
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for k ≥ 1. These are compact open subgroups of G. Let K(a) = NG(U(a)) (or
equivalently, defined as the G-normalizer of a), then K(a) is an open compact-
modulo-center subgroup of G. It is useful to know that the K(a) also normalizes
the subgroups Uk(a), k ≥ 1. Let va be the valuation map associated with the
hereditary order a. This induces a surjective homomorphism from

K(a) −→ Z.

We say a is a principal hereditary order if the ideal pa is principal. In this
situation, the group K(a) is a maximal compact mod center subgroup of G and all
such subgroups of G arise this way. Further, for πa satisfying va(πa) = 1, we have

p = aπa = πaa and K(a) = 〈πa〉U(a).

Any principal hereditary order a is G-conjugate to the order of matrices over oF

which are upper triangular (in blocks) modulo pF , where each block is of size n/e
and the number of blocks e = ea is the period of the lattice chain L associated to
a.

Let [a, k, 0, β], k ≥ 1, be a principal simple stratum in A (see [5, (1.5.5)]). It
consists of a principal hereditary oF -order a in A and a matrix β ∈ A satisfying

(i) the algebra E = F [β] is a field, whose degree over F is denoted d,
(ii) E× ⊂ K(a),
(iii) va(β) = −k,

and another technical condition denoted as (iv) in loc. cit. Let B denote the A-
centralizer of β and put b = a ∩B, Q = rad(b). The E-algebra B is isomorphic to
Mn/d(E) and b is a hereditary oE-order in B. The stratum is said to be maximal if
b is a maximal oE-order in B; given an isomorphism of E-algebras B ∼= Mn/d(E),
one identifies b with the standard maximal order Mn/d(oE). The lattice period ea
in this case is same as the ramification index e(E/F ) of E/F . Attached to such a
stratum are a pair of oF -orders given by H(β, a) ⊆ J(β, a) ⊆ a given by

H(β, a) = b+ p[
n
2 ]+1; J(β, a) = b+ p[

n+1
2 ]

which gives the compact open subgroups H(β, a) = H(β, a)× and J(β, a) = J(β, a)×

ofG. These are filtered byHm(β, a) = H(β, a)∩Um(a), Jm(β, a) = J(β, a)∩Um(a),
m ≥ 0, where U0(a) = a×. In particular, we have compact open subgroups

H1(β, a) ⊆ J1(β, a) ⊆ J(β, a)

of U(a). There is a finite set of characters C(a, β) of H1(β, a) called simple char-
acters. By construction, J(β, a) normalizes H1(β, a) and C(a, β) depends on the
choice of an additive character ψ = ψF of F of level one which we fix throughout
this paper.

For a maximal (principal) simple stratum [a, k, 0, β] as above, put

J̃(β, a) = E×J(β, a)

which is a compact mod center subgroup ofG. The data comprising these subgroups
and the set C(a, β) of simple characters are at the core of the classification of
supercuspidal representations of G. For a summary of their properties, see [2,
(2.1.1)]. Here, we highlight that

(a) J(β, a) is the unique maximal compact subgroup of J̃(β, a).
(b) J(β, a) = U(b) · J1(β, a) with U(b) ∩ J1(β, a) = U1(b).

(c) The normalizer of any simple character θ ∈ C(a, β) in G is J̃(β, a).
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(d) Given a θ ∈ C(a, β), there is a unique irreducible representation η of J1(β, a)
containing θ.

For k = 0, we set E = F and take a to be a maximal oF -order and deem the
resulting [a, 0, 0, 0] a maximal simple stratum as well. In this situation J(0, a) =
U(a), is a maximal compact open subgroup of G, J1(0, a) = H1(0, a) = U1(a), and

J̃(0, a) = K(a) = F×U(a). By a simple character in this situation, we mean the
trivial character of U1(a).

Definition 2.1. A pair (J, λ), where J is a compact open subgroup of G and λ is
an irreducible representation of J , is said to be a maximal simple type if there is a
maximal principal simple stratum [a, k, 0, β] (including the case k = 0 in the above
sense) and a simple character θ ∈ C(a, β), satisfying J = J(β, a) and θ is contained
in the restriction of λ to H1(β, a).

The simple character θ is said to be attached to λ. LetA0
n(F ) denote the category

of irreducible admissible supercuspidal (complex) representations of G. One of the
main results in [5] (see Ch. 6) on the classification of supercuspidal representations,
in terms of maximal simple types, is the following:

Proposition 2.1. Suppose σ ∈ A0
n(F ).

(a) There exists a maximal simple type (J, λ) which is uniquely determined up
to G-conjugacy, so that the restriction of σ to J contains λ.

(b) Let [a, k, 0, β] be a maximal simple stratum such that J = J(β, a) and θ ∈
C(a, β). Then λ extends uniquely to a representation λ̃ of the normalizer

J̃ := J̃(β, a) of θ in G such that the compact induction of λ̃ is isomorphic
to σ.

A pair (J̃ , λ̃) arising in this manner is called an extended maximal simple type.
If θ is the simple character attached to λ, the following also holds:

λ ∼= κ⊗ τ,

where κ is a β-extension of the unique irreducible representation η of J1 = J1(β, a)
containing θ, and τ is the inflation to J of a cuspidal representation of J(β, a)/J1(β, a)
∼= U(b)/U1(b) ∼= GLn/d(kE). If k = 0, the representation σ is said to be of “level
zero”. In this case, θ, η and κ are all trivial, and λ is the inflation of an irreducible
cuspidal representation of GLn(kF ). Otherwise, σ is of “positive level” and k is the
smallest integer so that Uk+1(a) ⊂ ker σ. The level lσ (normalized) of σ is defined
as k/e, where e = ea = e(E/F ) with E = F [β].

In both situations, the group J̃ ⊆ K(a). If we put ρ̃ = Ind
K(a)

J̃
λ̃, then by

transitivity of induction σ ∼= c-IndGK(a) ρ̃, consequently ρ̃ is irreducible. One can
check using Mackey formula that

ρ̃|U(a)
∼= ρ := Ind

U(a)
J(β,a) λ

and that it is also irreducible.
Let s = [G, σ]G be the supercuspidal inertial class in G determined by σ. By

[5, 6.2.3], an irreducible representation σ′ of G contains λ (or equivalently ρ) if and
only if σ′ ∼= σ ⊗ χ for some unramified quasicharacter χ of F×. This is what one
means by “(J(β, a), λ) (or (U(a), ρ)) is an s-type”.
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2.2. Explicit Whittaker functions. In this section we continue with σ ∈ A0
n(F )

and review the construction of a certain special Whitakker function in theWhittaker
model of σ due to Paskunas and Stevens [24]. Let K be an open, compact mod
centre subgroup of G and let (Λ,W ) be a smooth irreducible representation of K

such that σ ∼= c-IndGK Λ. Let U be the unipotent subgroup of G consisting of upper
triangular unipotent matrices and let B = TU be the corresponding Borel subgroup
of G.

Let C be the class of functions in c-IndGK Λ that are supported in K. Then there
is a canonical K-embedding, w �→ ϕw, from W onto C given by

ϕw(g) =

{
Λ(g)w, if g ∈ K;
0, if g �∈ K.

Fix a smooth character ψ = ψF of F of level one (as before), trivial on pF , but
not on oF . Then this determines a smooth non-degenerate character of U , also
denoted ψ by abuse of notation, via

(2.1) ψ(u) = ψ(
n−1∑
i=1

ui,i+1), u = (uij) ∈ U.

It is well-known that σ is generic and that dimC HomG(c-Ind
G
K Λ, IndGU ψ) = 1.

This space may be described using Mackey theory [21]. Namely, let H(G,Λ, ψ)
denote the space of functions,

f : G −→ HomC(W,C),

which satisfy

f(ugk) = ψ(u)f(g) ◦ Λ(k), u ∈ U, g ∈ G, k ∈ K.

Let dx denote the Haar measure on G/F×. Then, for φ ∈ c-IndGK Λ, f ∈ H(G,Λ, ψ),
we can form the convolution

(2.2) f � φ(g) =

∫
G/F×

f(y)(φ(y−1g))dy, g ∈ G.

One checks that the function f � φ belongs to IndGU ψ and thus this determines a
G-homomorphism from

(2.3) H(G,Λ, ψ) −→ HomG(c-Ind
G
K Λ, IndGU ψ)

which according to [21] is an isomorphism. Since the right hand side of (2.3) is one

dimensional and σ is irreducible, there is a unique G-subspace W(σ, ψ) of IndGU (ψ)
which is isomorphic to σ; we call this the ψ-Whittaker model of σ. We write

σ ∼= c-IndGK Λ � φ �→ Wφ ∈ W(σ, ψ)

to denote this bijection.
It follows from (2.3) that there is a unique double coset UxK that supports a

non-zero element of H(G,Λ, ψ) and the space of such functions is one dimensional.
This in turn means that there is a unique x such that Λ contains the character ψx

of x−1Ux ∩ K with multiplicity 1, or equivalently, the dual representation (Λ̌, W̌ )
contains the inverse of the character ψx with multiplicity 1. Let μ be a non-zero
element of W̌ = HomC(W,C) that transforms according to (ψx)−1 when restricted
to x−1Ux ∩ K. Define f = fμ ∈ H(G,Λ, ψ) supported on UxK as

f(uxk) = ψ(u)(μ ◦ Λ(k)), u ∈ U, k ∈ K.
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It is a simple matter to check that f is well-defined. The aforementioned bijection
is then given by

(2.4) φ �→ Wφ := f � φ,

and the corresponding ψ-Whittaker functional Ω(= Ωf ) is given by Ω(φ) = (f �
φ)(1). In particular, Ω(ϕw) = 0 unless x represents the trivial double coset UK.
Since f is unique up to a scalar, we suppress the obvious dependence of the func-
tion Wφ and the functional Ω on f . In any case, the Whittaker space W(σ, ψ) is
independent of the choice of f .

For calculation purposes, it will be convenient to have the coset containing the
identity as the one that supports the Whittaker model. To this end, keeping the
above notation, conjugating by x we see that

σ ∼= c-IndGxKx−1 Λx−1

.

This has the effect of changing K �→ xKx−1, Λ �→ Λx−1

and f �→ R(x)f . Then Λx−1

contains ψ when restricted to xKx−1 ∩ U and R(x)f is supported in UxKx−1. So
without loss of any generality, we may assume Λ contains ψ while writing σ as a
compactly induced representation from a compact mod center subgroup of G.

Proposition 2.2. Suppose σ ∼= c-IndGK Λ is as above and assume HomU∩K(ψ,Λ) �=
0. Then there exists a Whittaker function W ∈ W(σ, ψ) whose support is contained
in UK and satisfying the following properties:

• W(1) = 1
• W(gu) = ψ(u)W(g), u ∈ U ∩ K.

Further, if σ is unitarizable, we may choose W so that it also satisfies

W(g−1) = W(g), g ∈ K.

Proof. Since Λ contains ψ, we may take x = 1 in the above discussion. Choose
0 �= μ ∈ W̌ that transforms according to ψ−1 on U∩K. The space of such functionals
is one dimensional. Let f ∈ H(G,Λ, ψ) be the function supported in UK defined by
f(1) = μ. Then, for the measure du normalized so that vol(U ∩ K) = 1, and after

rescaling μ, one checks that the bijection φ �→ Wφ, φ ∈ c-IndGK Λ, is given by

Wφ(g) = (f � φ)(g) =

∫
U

ψ−1(u)μ(φ(ug))du.

Now, since the dimension of the space HomU∩K(ψ,Λ) is one, there is a unique
w ∈ W that transforms according to ψ and satisfying μ(w) = 1. Let cμ,w(g) =
μ(Λ(g)w), g ∈ K, denote the matrix coefficient associated to the pair (μ,w). Put
W = Wφw

. Since φw is supported in K, it follows that W is supported in UK. It
also follows from the above formula that, for k ∈ K,

W(k) =

∫
U∩K

ψ−1(u)μ(φw(uk))du =

∫
U∩K

ψ−1(u)μ(Λ(uk)w)du = μ(Λ(k)w).

Here, the last equality follows since by choice μ has the property

μ(Λ(u)w′) = ψ(u)μ(w′), u ∈ U ∩ K, w′ ∈ W.

Thus W(uk) = ψ(u)cμ,w(k), u ∈ U, k ∈ K and it clearly has the required properties.
Regarding the final assertion, if σ is unitarizable, so is the representation Λ. Fix a
K-invariant Hermitian inner product 〈·, ·〉 on W and identify W̌ with W . Choose
w ∈ W so that it transforms according to ψ on U ∩K and satisfies 〈w,w〉 = 1. Now
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apply the above argument with μ = μw, where μw(w
′) = 〈w′, w〉, w′ ∈ W , to see

that W(k) = 〈Λ(k)w,w〉, k ∈ K. �
By Proposition 2.1, σ determines a maximal simple type (J, λ) that is unique

up to G-conjugacy, we may therefore after conjugation (if necessary) choose K = J̃

and Λ = λ̃, so that λ̃ contains the character ψ when restricted to U ∩ J̃ . This gives
us the following (cf. [1, Proposition 1.6], [24, Proposition 1.3]):

Proposition 2.3. Suppose σ ∈ A0
n(F ). There exists an extended maximal simple

type (J̃ , λ̃) with associated principal stratum [a, k, 0, β] , k ≥ 0, as in §2.1, satisfying
σ ∼= c-IndG

J̃
λ̃ and HomU∩J̃ (ψ, λ̃) �= 0.

The conclusion also remains valid if we replace (J̃ , λ̃) with the associated (K(a), ρ̃).

Moreover, such a pair (J̃ , λ̃) is determined up to conjugation by u ∈ U .

Fix an extended maximal simple type (J̃ , λ̃) given by Proposition 2.3 and let

θ ∈ C(a, β) be the simple character of H1 = H1(β, a) attached to λ̃. The fact that

λ̃ ⊃ ψ implies that
ψ(x) = θ(x), x ∈ U ∩H1.

Define the character Ψ : (J(β, a) ∩ U)H1 −→ C× as in [24, Definition 4.2] via

Ψ(uh) := ψ(u)θ(h)

which is well-defined since J normalizes θ. The character Ψ occurs in λ̃ (and also

in σ) with multiplicity one. Applying Proposition 2.2 to the pair (K,Λ) = (J̃ , λ̃),
let Wσ ∈ W(σ, ψ) denote the resulting Whittaker function.

The main thrust of [24, Section 5] is thatWσ can be realized in terms of the Bessel
function which reveals additional properties of Wσ that are crucial for computation
of the Rankin-Selberg local factors. Namely, put U = (U ∩ J(β, a))H1, M =

(P 1 ∩ J(β, a))J1, and K = J̃ , where P 1 is the mirabolic subgroup of G consisting
of matrices whose last row is en := (0, 0, . . . , 0, 1) and J1 = J1(β, a). Thus we have

the data U ⊂ M ⊂ K along with the representation λ̃ of K and the character Ψ of
U satisfying [24, Theorem 4.4]:

• λ̃|M is irreducible,

• λ̃|M ∼= IndMU Ψ.

Attached to this data is the Bessel function J = Jλ̃ : K −→ C having the
following properties (cf. [24, Proposition 5.3]):

(i) J (1) = 1;
(ii) J (hg) = J (gh) = Ψ(h)J (g) for all h ∈ U , g ∈ K;
(iii) if J (g) �= 0, then g intertwines Ψ. In particular, for m ∈ M, J (m) �= 0 if

and only if m ∈ U ;
(iv) for all g1, g2 ∈ K, we have∑

M/U
J (g1m)J (m−1g2) = J (g1g2).

By [24, Proposition 5.7], we have

Wσ(g) = J (g), g ∈ J̃ ,

and consequently it follows from (iii) that, for g ∈ P ,

Wσ(g) �= 0 =⇒ g ∈ U .
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2.3. A numerical invariant. For σ ∈ A0
n(F ), choose an extended maximal simple

type (J̃(β, a), λ̃) with λ̃ ⊃ ψ as in Proposition 2.3. Recall A = Mn×n(F ) and
E = F [β]. Let {ei : 1 ≤ i ≤ n} be the standard row basis of Fn. Let φ : A −→ C×

denote the additive character given by

φ(X) = ψ(enX
te1), X ∈ A.

Let m be the integer so that φ is trivial on pm+1 but not on pm, we call this
the conductor of φ with respect to the Jacobson radical p = pa. If ν ∈ E×/(1 +
pE) denotes the “numerical invariant” defined in [24, Definition 6.1], then m =
n · ordE(ν)

d
according to [24, Lemma 7.5]. Also, for any integer r ∈ Z, let φr : A →

C× denote the additive character φr(X) = φ(�r
EX); it has conductor m − r, i.e.,

non-trivial on pm−r, but trivial on pm−r+1.

3. Covers

3.1. Some generalities. The notion of covers is a general theory that gives a
module theoretic interpretation of parabolic induction and Jacquet restriction in
representation theory of p-adic groups. We refer the reader to [6, §8] for the founda-
tional aspects of this theory. Suppose G is the group of F -points of some connected
reductive group defined over F and P is the F -points of a parabolic subgroup of
G. Let P = LN be a Levi decomposition with L the F -points of a Levi subgroup
of P and N the F -points of the unipotent radical of P . Let X(L) denote the group
of unramified quasicharacters of L, i.e., continuous homomorphisms L −→ C× that
are trivial on all compact subgroups of L. Let R(G) denote the category of smooth
complex representations of G.

By a cuspidal pair in G we mean a pair (L, τ ) in G, where L is as above and τ
is a supercuspidal representation of L. Two such pairs (Li, τi), i = 1, 2, are said to
be inertially equivalent if there exists a g ∈ G and χ ∈ X(L) such that

L2 = Lg
1 = g−1L1g and σ2

∼= σg
1 ⊗ χ,

where σg
1 is the representation x �→ σ1(gxg

−1) of L2. We write [L, τ ] to denote
the G-inertial equivalence class of a cuspidal pair (L, τ ) in G and let B(G) denote
the set of inertial equivalence classes in G. For each s ∈ B(G), we have a full
subcategory Rs(G) of R(G) defined as follows: a smooth representation π′ belongs
to Rs(G) if and only if each irreducible subquotient π of π′ has inertial support s
(cf. [6, Definition 1.1]).

A pair (J, λ), where J is a compact open subgroup of G and (λ,W ) is a smooth
irreducible representation of J , is said to be an s-type if the following holds: For
every irreducible object (π, V ) ∈ R(G), (π, V ) belongs to Rs(G) if and only if
π contains λ, i.e., the space Vλ := HomJ (W,V ) �= 0. Let (λ̌, W̌ ) denote the
contragredient of (λ,W ), we define H(G, λ) as the space of compactly supported
functions f : G −→ EndC(W̌ ) that satisfy

f(hxk) = λ̌(h)f(x)λ̌(k), x ∈ G, h, k ∈ J.

It is unital (associative) algebra under the standard convolution operation

f1 � f2(g) =

∫
G

f1(x)f2(x
−1g)dx, with f1, f2 ∈ H(G, λ).



644 YEONGSEONG JO AND M. KRISHNAMURTHY

One can similarly define the algebraH(G, λ̌). There is a canonical anti-isomorphism
f �→ f̌ from H(G, λ) → H(G, λ̌) given by f̌(g) = (f(g−1))∨. For a ∈ EndC(W̌ ), a∨

denotes the transpose of a with respect to the canonical pairing between W and W̌ .
The space Vλ of λ-coinvariants then has a natural left H(G, λ)-module structure
(also denoted as π) given by

π(f)φ(w) =

∫
G

π(g)φ(f(g)∨w)dg; f ∈ H(G, λ), φ ∈ Vλ, w ∈ W.

Then the map V �→ Vλ is an equivalence of categories Rs(G) ∼= H(G, λ)−Mod.
We write ιGP to denote the functor of normalized parabolic induction. For any

smooth representation σ of L, let FP (σ) denote the space of ιGP (σ).
Let JL be a compact open subgroup of L and λL an irreducible smooth repre-

sentation of JL. A G-cover of (JL, λL) is a pair (J, λ), where J is a compact open
subgroup of G and λ is a smooth irreducible representation of J , satisfying certain
properties. We refer the reader to [6, Definition 8.1] for the precise definition of a
G-cover. Suppose (JL, λL) is t-type for t ∈ B(L). Let s ∈ B(G) be the correspond-
ing element determined by t. We recall certain important properties of a G-cover
(J, λ):

(a) Let P = LN be the parabolic subgroup opposite to P . Then

J = J ∩N · J ∩ L · J ∩N, and J ∩ L = JL.

The representation λ is trivial on J ∩N and J ∩N , while λ|JL
∼= λL.

(b) The pair (J, λ) is an s-type in G. (cf. [6, Theorem 8.3].)
(c) There is a canonical injective algebra homomorphism jP : H(L, λL) −→

H(G, λ) which preserves support of functions and realizes the induction
functor ιGP under the above said equivalence of categories. (cf. [6, Corollary
8.4].)

(d) (J, λ) is said to be a split cover if, for every choice of parabolic subgroup P
with Levi L, the map jP is an isomorphism of algebras.

We note Lemma 3.1 whose proof is clear from definitions.

Lemma 3.1. Suppose x ∈ M normalizes the pair (JL, λL) and (J, λ) is a G-cover
of (JL, λL). Then the conjugate pair (Jx, λx) is also a G-cover of (JL, λL). (Here
Jx = xJx−1 and λx(y) = λ(x−1yx), y ∈ Jx.)

In this paper, we are concerned with covers for the general linear group G.

Suppose L =
∏k

i=1 GLni
(F ) is a product of general linear groups and σ = ⊗k

i=1πi,
where πi is an irreducible supercuspidal representation of GLni

(F ). By §2.1 each

πi contains an extended maximal simple type (J̃i, λ̃i). Put

(3.1) J̃L =
k∏

i=1

J̃i and λ̃L = ⊗k
i=1λ̃i,

then σ ∼= c-Ind λ̃L. Let t denote the L-inertial equivalence class of the pair (L, σ).
The associated pair (JL, λL) is a t-type. The existence of a G-cover of (JL, λL)
is shown in [7, §1.5, Theorem]. The G-normalizer NG(L) of L acts on B(L) by
conjugation. We have the following result of Bushnell and Kutzko regarding the
presence of a split cover:

Proposition 3.2 ([9, §1.5, Theorem]). If the NG(L)/L-stabilizer of t is trivial,
then any G-cover (J, λ) of (JL, λL) splits.



LS METHOD FOR PAIRS VIA TYPES AND COVERS 645

3.2. Covers in the homogeneous case ([7, §7]). Consider G = GL2n(F ) and let
B = TU denote the F -points of the standard Borel subgroup of upper triangular
matrices. Let L = GLn(F ) × GLn(F ), the F -points of a maximal Levi subgroup
of G. To avoid confusion, we write Un(F ) to denote the F -points of the upper
maximal unipotent radical of GLn(F ). In particular U ∩ L = Un(F )× Un(F ). Let
A = EndF (F

2n) which we identify with M2n(F ) after fixing a basis and regard
the Levi subgroup L as the stabilizer of a decomposition of V = F 2n of the form
V = V1 ⊕ V2. For convenience, we write Gi = GLn(F ), i = 1, 2. Let π1, π2

be irreducible supercuspidal representations of GLn(F ) associated with the same
endo-class. Let σ = π1 × π2 denote the corresponding irreducible supercuspidal
representation of L. We use the notation of §2.1 by appending subscripts i, if
necessary. For instance, we have

(3.2) πi
∼= c-Ind

GLn(F )

J̃i
λ̃i, i = 1, 2,

where (J̃i, λ̃i) is an extended maximal simple type contained in πi and satisfying

(3.3) HomU∩Ji
(ψ, λi) �= 0

as in Proposition 2.3, where λi denotes the restriction λ̃i|Ji
.

Due to our assumption on the endo-class, the maximal simple types (Ji, λi) may
be chosen so that they are both associated to a common simple stratum [a, k, 0, β]
with the same underlying simple character θ (cf. [17]). Whence J1 = J2 = J(β, a),
and

(3.4) λi = κ⊗ τi, i = 1, 2,

where τi is the lift of a cuspidal representation of J(β, a)/J1(β, a) ∼= GLn/d(kE)
with E = F [β]. Put

w0 =

(
In

In

)
,

a representative for a “certain unique” Weyl group element in G. (See §5 for a
precise definition.) Then w0(σ) = π2 × π1. Let (JL, λL) be the corresponding t-
type in L as in (3.1). We recall the construction of the cover (J, λ) in this situation.
Suppose L = {Lr : r ∈ Z} is the lattice chain of period e determined by the

order a. It determines lattice chains Li = {Lj
i} in Vi, i = 1, 2 under the natural

identification of Vi with Fn. We concatenate these lattice chains together to get a
chain of period 2e in the sense of [7, §2.8]:

· · · ⊃ L0
1 ⊕ L0

2 ⊃ L0
1 ⊕ L1

2 ⊃ L1
1 ⊕ L1

2 ⊃ L1
1 ⊕ L2

2 ⊃ · · · .
This defines a hereditary oF -order a

′ in A which in (block) matrix form is given by

a′ =

(
a a

p a

)
and whose Jacobson radical is

p′ =

(
p a

p p

)
.

We embed E in A via the map x �→
(
x

x

)
and let β′ denote the image of β under

this map. Let B denote the centralizer of β′ in A which is isomorphic to M2n/d(E);
put b′ = a′∩B. Thus we obtain a simple stratum [a′, 2k, 0, β′] in A with associated
compact open subgroups H1(β′, a′) ⊆ J1(β′, a′) ⊆ J(β′, a′) as in §2.1. By choosing
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a suitable (ordered) E-basis of V , we may take the decomposition V = V1 ⊕ V2 to
be an E-decomposition that is subordinate to the oE-order b

′, in the sense of [5, Ch.
7]. This ensures that the groups J(β′, a′), J1(β′, a′) and H1(β′, a′) have an Iwahori
decomposition with respect to P . As in [7, §7.2], set

(3.5) J ′ = (H1(β′, a′) ∩N)× (J(β′, a′) ∩ P ),

it is a subgroup of J(β′, a′) containing H1(β′, a′). It admits a representation λ′

of the form λ′ = κ′ ⊗ τ ′, where the restriction of κ′ to J ′ ∩ L = J(β′, a′) ∩ L =
J(β, a) × J(β, a) is of the form κ ⊗ κ and the τ ′ is the inflation of τ1 ⊗ τ2 to
a representation of J ′. By [7, Theorem, §7.2], the pair (J ′, λ′) is a G-cover of
(JL, λL). Fixing a uniformizer �E of E, we have (cf. [23, Proof of Lemma 4.4])

(3.6) J ′ ∩N =

(
In �−1

E H1(β, a)
In

)
; J ′ ∩N =

(
In

�EJ(β, a) In

)
.

Since va(�E) = 1, it generates the principal ideal pa of a. For m ∈ Z as in §2.3,
put x =

(
�m+1

E In
In

)
∈ L. It follows from property (c) in §2.1 that x normalizes

(JL, λL). Hence by Lemma 3.1, we may conjugate (J ′, λ′) by x to obtain the cover
(J ′

m, λ′
m) of (JL, λL) satisfying

(3.7) J ′
m ∩N =

(
In �m

EH1(β, a)
In

)
; J ′

m ∩N =

(
In

�−m
E J(β, a) In

)
.

Remark 1. In the level zero case, i.e., k = 0, we have m = 0 and (3.7) reduces to

J ′
m ∩N =

(
In p

In

)
; J ′

m ∩N =

(
In
a In

)
,

where a = Mn(oF ) and p = �FMn(oF ).

4. The Rankin-Selberg theory

We recall the definition of the γ-factor attached to pairs, using the formulation
of Jacquet, Piatetski-Shapiro, and Shalika in [16]. Let π1 and π2 be irreducible
admissible (generic) representations of GLn(F ) with associated Whittaker models
W(π1, ψ) and W(π2, ψ), respectively. Let C∞

c (Fn) be the space of locally constant
and compactly supported functions Φ : Fn → C. For each W1 ∈ W(π1, ψ), W2 ∈
W(π2, ψ), and Φ ∈ C∞

c (Fn), we associate the Rankin-Selberg zeta integral

Z(s,W1,W2,Φ) =

∫
Un(F )\GLn(F )

W1(g)W2(g)Φ(eng)‖det(g)‖sdg,

where dg is a GLn(F )-right invariant measure on Un(F )\GLn(F ). This integral
converges absolutely for �(s) � 0, and it defines a rational function in C(q−s). Let

wn =

(
1

. .
.

1

)
denote the long Weyl element in GLn(F ). For any smooth representation (π, V )
of GLn(F ), let πι denote the representation of GLn(F ) on the same space V given
by πι(g) = π(tg−1). If π is irreducible, it is known that πι ∼= π̌, the contragredi-
ent representation of π. If W ∈ W(π, ψ), then W̌(g) := W(wn

tg−1) belongs to
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W(π̌, ψ). Let Φ̂ denote the Fourier transform of Φ given by

Φ̂(y) =

∫
Fn

Φ(x)ψ(x ty)dx,

where dx is the normalized self-dual measure so that
̂̂
Φ(x) = Φ(−x). There is a

function γ(s, π1 × π2, ψ) ∈ C(q−s) such that

(4.1) Z(1− s, W̌1, W̌2, Φ̂) = ωπ2
(−1)n−1γ(s, π1 × π2, ψ)Z(s,W1,W2,Φ)

for all Φ ∈ C∞
c (Fn). Further, the integrals Z(s,W1,W2,Φ) span a principal frac-

tional ideal of the ring C[qs, q−s] containing 1. Hence it admits a unique generator
of the form P (q−s)−1 where P ∈ C[X] with P (0) = 1. By definition

L(s, π1 × π2) = P (q−s)−1

and there is a monomial factor ε(s, π1 × π2, ψ) of the form cq−f(π1×π2,ψ)s so that

γ(s, π1 × π2, ψ) =
ε(s, π1 × π2, ψ)L(1− s, π̌1 × π̌2)

L(s, π1 × π2)
.

Further, the epsilon factor ε(s, π × σ, ψ) satisfies the functional equation

(4.2) ε(1− s, π̌1 × π̌2, ψ)ε(s, π1 × π2, ψ) = 1.

4.1. The calculation of Paskunas-Stevens. Here, we briefly review the proof of
[24, Theorem 7.1] and state that result (see Proposition 4.1 and Proposition 4.2) in
a form suited to this paper. Let π1 and π2 be unitary supercuspidal representations
of GLn(F ) associated to the same endo-class. We then have the extended maximal

simple types (J̃i, λ̃i), i = 1, 2, satisfying (3.2) and (3.3) with

J̃1 = J̃2 = J̃(β, a) = E×J(β, a), E = F [β];

and λi = λ̃i|J(β,a) = κ ⊗ τi, i = 1, 2, as in (3.4). For i = 1, 2, let Wi = Wπi
∈

W(πi, ψ) and let W̌2 = Wπ̌2
∈ W(π̌2, ψ), be the Whittaker functions as in §2.2. Let

Ji = Jλ̃i
be the corresponding Bessel function and let J̌i denote the Bessel function

associated to the dual of λ̃i. As noted in [24], J̌i(g) = Jλ̃i
(g−1), g ∈ J̃(β, a). By

unitarity, it follows from Proposition 2.2 that

W̌i = Wi.

By construction Supp(Wi) ⊂ Un(F )E×J(β, a), i = 1, 2, and

W1(ug) = ψ(u)J1(g), W2(ug) = ψ−1(u)J2(g), u ∈ Un(F ), g ∈ J̃(β, a),

and W1(1) = W2(1) = 1. Using the pair (W1, W̌2), one may calculate the zeta
integrals on either side of the functional equation (4.1) for a suitable Φ. In fact,
suppose Φ = Φ0 is the characteristic function on the set enJ

1(β, a). For any subset
X ⊇ Un(F ) of GLn(F ), volUn

(X) denotes the volume of Un(F )\X with respect to a
Haar measure dg on Un(F )\GLn(F ). Also, for any lattice L in Fn, we write volF (L)
to denote the volume with respect to the measure dx. As shown in [24, Proposition
7.2] we have

(4.3) Z(s,W1, W̌2,Φ0) = volUn
(Un(F )H1(β, a)).
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After certain standard manipulations and using the normalization that the measure
on Un(F ) is so that vol(Un(F ) ∩ J(β, a)) = 1, the corresponding integral on the
dual side takes the form

(4.4) Z(1− s, W̌1,W2, Φ̂0) =
∑
r∈Z

Srq
r(s−1)
a ,

where

Sr =

∫
J(β,a)

W1(�r
Eg)W2(�

r
Eg)Φ̂0(e1

t(�r
Eg))dg

and qa = qn/e = q
n/d
E .

Considering the support of Φ̂0 (cf. [24, Lemma 7.7]), the sum in (4.4) is effectively
over r ≥ m with

Sr = volF (enp
1+m)qma

{ ∫
J(β,a)

J1(�r
EX)J2(�

r
EX)dX if r > m,∫

J(β,a)
J1(�r

EX)J2(�
r
EX)φr(X)dX if r = m.

Here, φr(X) = φ(�r
EX) is the additive character as in §2.3, and Ji is the Bessel

function corresponding to Wi, i = 1, 2. We consider the following two cases.

4.2. The case τ1 � τ2. In this case, π1 is not equivalent to any unramified twist
of π2, and by [24, Lemma 7.10] we have∫

J(β,a)

J1(�r
EX)J2(�

r
EX)dX = 0,

for any r ∈ Z. Consequently
(4.5)

Z(1− s, W̌1,W2, Φ̂0) = volF (enp
m+1)qms

a

∫
J(β,a)

W1(�m
EX)W2(�

m
EX)φm(X)dX.

Combining (4.5) and (4.3), we obtain the following:

Proposition 4.1. Suppose τ1 � τ2. Then

γ(s, π1 × π̌2, ψ) = υωπ2
(−1)n−1qms

a

∫
J(β,a)

W1(�m
EX)W2(�

m
EX)φm(X)dX

with υ =
volF (enp

m+1)

volUn
(Un(F )H1(β, a))

. In particular f(π1 × π̌2, ψ) = −(mn)/e.

4.3. The case τ = τ1 ∼= τ2. In this situation, there exists an unramified quasi-
character χ of F× so that π1

∼= π2 ⊗ (χ ◦ det). If we write χ(x) = ‖x‖s0 , s0 ∈ C,
then γ(s, π1 × π̌2) = γ(s + s0, π1 × π̌1). Hence we may assume χ is trivial, i.e.,
π = π1

∼= π2. It follows from [5, (6.2.5)] that

(4.6) L(s, π × π̌) = (1− q−s
a )−1.
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Put W = W1 = W2 and J = J1 = J2. Let U ⊂ M ⊂ J̃(β, a) be as in §2.2. It is
shown in [24, Section 7.3] that, for �(s) < 1,

Z(1− s, W̌1,W2, Φ̂0) =
∑

r≥m∈Z

Srq
r(s−1)
a

= volF (enp
m+1)qms

a vol(U)
{

qsa − 1

1− qs−1
a

}
= volF (enp

m+1)vol(U)q(m+1)s
a

L(1− s, π × π̌)

L(s, π × π̌)
.

By analytic continuation we obtain

γ(s, π × π̌, ψ) = υvol(U)ωπ(−1)n−1q
(m+1)s
a

L(1− s, π × π̌)

L(s, π × π̌)
.

We apply the functional equation (4.2) to obtain

1 = υ2vol(U)2qm+1
a

which in turn implies υvol(U) = q
−m+1

2
a .

Proposition 4.2. For π = π1
∼= π2 as above, we have

γ(s, π × π̌, ψ) = ωπ(−1)n−1q
(m+1)(s− 1

2 )
a

L(1− s, π × π̌)

L(s, π × π̌)
.

In particular f(π × π̌, ψ) = −(m+ 1)n/e.

5. The Langlands-Shahidi local coefficient

First, we recall the necessary basics of the Langlands-Shahidi method. Let
G,B, P, . . . for the moment be as general as in §3. Suppose Δ is a set of simple
roots (restricted) in G, let ΔL ⊂ Δ correspond to L. Now, assume P is maximal
and let α be the unique simple root whose root subgroup belongs to N . Let w̃0 be
the unique Weyl group element in G such that w̃0(Δ

L) ⊂ Δ while w̃0(α) < 0. We
will also assume P is self-associated, i.e., w̃0(Δ

L) = ΔL. It is a standard fact that
X(L) is equipped with the structure of a complex torus. This allows us to talk
about “regular” and “rational” functions of χ ∈ X(L) in a certain sense. We write
ιGP to denote the normalized parabolic induction functor and write FP (·) to denote
the space of the induced representation ιGP (·).

For a smooth irreducible representation σ of L, consider the standard intertwin-
ing operator A(χ, σ,w0) : ι

G
P (σ ⊗ χ) −→ ιGP (w0(σ ⊗ χ)) given by

(5.1) A(χ, σ,w0)f(g) =

∫
N

f(w−1
0 ng)dn, f ∈ FP (σ ⊗ χ).

The integral converges for �(χ) � 0 and defines a rational function on a non-empty
Zariski open subset of the complex torus X(L).

Now, for ψ ∈ F̂ as before, it defines a character ψG of the maximal unipotent
subgroup U of G as explained in [30, Section 3]. We also pick the representative
w0 so that it is compatible with ψG, this means that its restriction to U ∩L has the
following property:

ψG(u) = ψG(w−1
0 uw0), u ∈ U ∩ L.

Note that ψG also determines a character of the maximal unipotent radical U ∩ L
of L via restriction which we denote as ψL. Suppose σ is generic with respect to
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this ψL and fix a non-zero ψL-Whittaker functional ΩL on the space of σ. For
f ∈ FP (σ ⊗ χ) such that Supp(f) ⊂ Pw−1

0 N , define

Ω(χ, σ)(f) =

∫
N

ΩL(f(w−1
0 n))ψG(n)dn.

It is well-known that this admits a unique extension to give a non-zero ψG-Whittaker
functional Ω(χ, σ) on all FP (σ⊗χ); further χ �→ Ω(χ, σ) is a holomorphic function
[11, Proposition 2.1]. As before, for the purpose of calculations, we need [11, Corol-
lary 2.3] which gives a formula for the extension Ω(χ, σ) in the following sense:
Given a compact open subgroup K of G, there exists a suitably large compact
open subgroup N∗ ⊂ N such that

Ω(χ, σ)(f) =

∫
N∗

ΩL(f(w−1
0 n))ψG(n)dn

for all χ and for all f ∈ FP (σ⊗χ)K . One similarly defines the non-zero functional
Ω(w0(χ),w0(σ)) on ιGP (w0(σ ⊗ χ)).

The Langlands-Shahidi local coefficient attached to σ, ψ and w0 is the non-zero
constant Cψ(χ, σ,w0) given by Rodier’s multiplicity-one theorem, i.e.,

(5.2) Cψ(χ, σ,w0)(Ω(w0(χ),w0(σ)) ◦A(χ, σ,w0)) = Ω(χ, σ).

We return to the notation of §3.2 and takeG = GL2n(F ), L = GLn(F )×GLn(F ).
Let σ = π1 × π2 ∈ R(L) be supercuspidal with π1 and π2 associated to the same

endo-class. We then have the extended maximal simple types (J̃i, λ̃i), i = 1, 2,
satisfying (3.2) and (3.3) with

J̃1 = J̃2 = E×J(β, a);

and λi = κ ⊗ τi, i = 1, 2, as in (3.4). This determines a t-type (JL, λL) in L. For
s ∈ C, let χs ∈ X(L) be the unramified character given by

χs(g) = ‖det(g1)‖s/2 ‖det(g2)‖−s/2; g = (g1, g2) ∈ L.

With w0 fixed as in §3.2, we note that it is compatible with the character ψG of
U given by (2.1), and w0(χs) = χ−s. We write A(s, σ) to denote the intertwining
operator A(χs, σ,w0) and Cψ(s, σ) to denote the corresponding local coefficient
Cψ(χs, σ,w0). We choose unramified quasicharacters ‖ · ‖s1 and ‖ · ‖s2 of F×,
s1, s2 ∈ C so that π1⊗‖·‖−s1 and π2⊗‖·‖−s2 are unitary. We put π◦

1 = π1⊗‖·‖−s1

and π◦
2 = π2 ⊗ ‖ · ‖−s2 . One can easily check that

(5.3) Cψ(s, π1 × π2) = Cψ(s+ s1 − s2, π
◦
1 × π◦

2).

Hence for calculation purposes, we may assume that both π1 and π2 are unitary.

5.1. A note on measures. Clearly the definition of A(χ, σ,w0) and Ω(χ, σ) in-
volves a choice of Haar measure dn on N . Following [4, §5.2], for a random measure
dn on N , we always choose the measure dn on N that is dual to dn, relative to ψ.
Then the measure dn⊗ dn on N ×N is independent of the initial choice of dn. (It
only depends on L and the additive character ψ.) Hence, for any compact open
subgroup K ≤ G, the product of volumes vol(K ∩N)vol(K ∩N) is independent of
the choice of dn. We will exploit this fact in our calculations with K = J ′ as in
(3.5).
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5.2. The case τ1 � τ2. Let (J, λ) = (J ′
m, λ′

m) be the cover as in (3.7). In this
situation, we have

π2 �∼= π1 ⊗ (χ ◦ det),
for any unramified character χ of F×, which in turn implies that the cover (J, λ)
splits (cf. Proposition 3.2). We introduce certain functions in the induced repre-
sentation space for later use. Let K be any compact open subgroup of N and let
Vσ denote the space of σ. For u ∈ Vσ, consider the function fu = fu,K ∈ FP (σ)
defined as follows (cf. [4, §1.2]): fu is supported in PK and

(5.4) fu(xk) = δP (x)
1/2σ(x)u, x ∈ P, k ∈ K.

For any compact open subgroup K of N , similarly define the function f ′
u = f ′

u,K ∈
FP (w0(σ)) supported in Pw0K and given as

(5.5) f ′
u(xw0k) = δP (x)

1/2w0(σ)(x)u, x ∈ P, k ∈ K.

Let us re-write (5.4) and (5.5) in the current context. Let Wi denote the rep-

resentation space of λ̃i, i = 1, 2; thus the representation space W of λ̃L is given
by W = W1 ⊗ W2. Since each λi contains ψ, it follows that λL contains the
character ψL = ψ × ψ of U ∩ L = Un(F ) × Un(F ). Further, there is a canon-

ical J̃i-homomorphism from Wi into the space of πi given by wi �→ ϕwi
, where

ϕwi
is supported in J̃i. Given w1 ∈ W1 and w2 ∈ W2, let w = w1 ⊗ w2 and let

ϕw = ϕw1
⊗ ϕw2

. One checks that ϕw belong to the λL-isotypic subspace of π.
Let fw ∈ FP (σ ⊗ χs) and f ′

w ∈ FP (w0(σ ⊗ χs)) denote the function fϕw
and f ′

ϕw
,

respectively.

Remark 2. It will be helpful to relate our notation to that of [4]. For instance, the
function fw = vol(J ∩N) fu

ϕw
, where fu

ϕw
is the function defined in [4, §1.3]. On the

other hand, since w0Pw−1
0 = P , for any smooth representation τ of L, we see that

the map L(w0) : i
G
P
(τ ) −→ iGP (w0(τ )), given by f �→ f(w−1

0 ·), is a G-isomorphism.

Thus if f l
ϕw

∈ iG
P
(σ ⊗ χs) is as in [4, §1.2], then f ′

w = vol(J ∩N)L(w0)f
l
ϕw

.

Proposition 5.1. If the G-cover (J, λ) of (JL, λL) splits, then

A(s, σ)fw=vol(J∩N)f ′
w and A(−s,w0(σ))◦A(s, σ)fw=vol(J∩N)vol(J∩N)fw.

Proof. This is a reformulation of [4, Proposition 2.4]. Namely, assuming that the
measures are normalized so that vol(J ∩N) = vol(J ∩N) = 1, it is shown in loc.
cit. that A(s, σ)fu

ϕw
= f l

ϕw
. However, with Remark 2 in mind, this in turn implies

our assertion. �
We fix ψ-Whittaker functionals Ωi for πi, i = 1, 2, as in §2.2; then ΩL = Ω1⊗Ω2

is a ψL-Whittaker functional for σ = π1 × π2. Let Ω(s, σ) denote Ω(χs, σ) defined
with respect to ψG. Before we proceed further, writing a typical element of N as

n(X) =

(
In X

In

)
, we note that the character

X �→ ψG(n(X)) = ψ(Xn,1)

is nothing but the additive character φ of A introduced in §2.3.

Lemma 5.2. Keeping the above notation, we have

Ω(−s,w0(σ))(f
′
w) = ΩL(ϕw)vol(J ∩N).

Further, we may choose w so that ΩL(ϕw) = 1.
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Proof. This is easy since the function f ′
w is supported on Pw0N . Namely,

Ω(−s,w0(σ))(f
′
w) =

∫
J∩N

ΩL(f ′
w(w0n)ψG(n)dn = ΩL(ϕw)

∫
J∩N

ψG(n)dn.

Since

n = n(X) ∈ N ∩ J =⇒ X ∈ p
m+1,

it follows that ψG(n(X)) = φ(X) = 1 for u = n(X) ∈ J ∩N . Consequently

Ω(−s,w0(σ))(f
′
w) = ΩL(ϕw)vol(J ∩N).

For i = 1, 2, let Wi = Wπi
be the Whittaker function defined in §2.2. By construc-

tion Wi = Wϕwi
for a unique wi ∈ Wi. Then ΩL(ϕw) = W1(1)W2(1) = 1 for the

corresponding w = w1 ⊗ w2. �

This brings us to the central issue of computing Ω(s, σ)(fw). It is not straight-
forward since fw, unlike f ′

w, is supported near the identity element. Let us fix
w = w1 ⊗ w2 as in the above lemma so that Wi = Wϕwi

= Wπi
, i = 1, 2. For

X ∈ GLn(F ), let n(X) ∈ N be as in the proof above and let n̄(X) ∈ N denote the

element n̄(X) =

(
In
X In

)
. We have

w0n(X) =

(
−X−1

X

)(
In −X

In

)(
In
X−1 In

)
,

hence

fw(w0n(X)) =

{
det(X)−s−n(π1(−X−1)⊗ π2(X) · ϕw) if n̄(X−1) ∈ J ∩N,
0 otherwise.

Since

J ∩N =

(
In

�−m
E J(β, a) In

)
,

it follows that Ω(s, σ)(fw) equals∫
{
X∈p

−t:det(X) 
=0

X−1∈�−m
E J(β,a)

} ‖det(X)‖−s−nΩL(π1(−X−1)⊗ π2(X) · ϕw)φ(X)dX

for some t � 0.
Let us write ΩL(π1(−X−1)⊗ π2(X) · ϕw) as W1(−X−1)W2(X), where, for i =

1, 2, Wi = Wπi
= Wϕwi

as in Lemma 5.2. Then

Ω(s, σ)(fw) =

∫
{
X∈p

−t:det(X) 
=0

X−1∈�−m
E J(β,a)

} ‖det(X)‖−sW1(−X−1)W2(X)φ(X)d×X,

where d×X = dX
‖det(X)‖n which is invariant for the adjoint action of L on N . Making

the change of variable X �→ −X, we obtain

Ω(s, σ)(fw) = ωπ2
(−1)

∫
{
X∈p

−t:det(X) 
=0

X−1∈�−m
E J(β,a)

} W1(X
−1)W2(X)φ(X)‖det(X)‖−sd×X

for sufficiently large t. Since the Whittaker functions Wi, i = 1, 2, are both sup-
ported in Un(F )E×J(β, a), it is enough to consider those X which belong to the
set ⋃

−t≤r≤m

Un(F )�r
EJ(β, a).
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For any integer r, define the shell Dr by

Dr = {X ∈ Un(F )�r
EJ(β, a) : X ∈ p

−t, X−1 ∈ �−m
E J(β, a)},

and re-write the above integral as

Ω(s, σ)(fw) = ωπ2
(−1)

∑
−t≤r≤m

qrsa Ir,

where

Ir =

∫
Dr

W1(X
−1)W2(X)φ(X)d×X.

Using Proposition 5.1 and Lemma 5.2 we obtain

(5.6) vol(J ∩N)vol(J ∩N)Cψ(s, π1 × π2) = ωπ2
(−1)

∑
−t≤r≤m

qrsa Ir.

On the other hand [28, Proposition 2.1(b)] combined with the above expression
implies that Cψ(s, π1×π2) ∈ C[qs, q−s]×, i.e., a monomial in q−s. Therefore all but
one of the integrals Ir must vanish. We claim Im �= 0, completing the computation
of the local coefficient in this case. To that end, we require Lemma 5.3.

Lemma 5.3. One has Dm = �m
E J(β, a).

Proof. We will use the fact that �E normalizes the oF - order J(β, a) and hence its
unit group J(β, a) = J(β, a)×. It is clear that �m

E J(β, a) ⊂ Dm. For the reverse
inclusion, suppose X ∈ Dm, write

X = u�m
E j, u ∈ Un(F ), j ∈ J(β, a).

Since X−1 ∈ �−m
E J(β, a), it follows that u−1 ∈ J(β, a) which implies that X ∈

�m
E J(β, a). �

It follows from Lemma 5.3 that

Im =

∫
J(β,a)

W1((�
m
EX)−1)W2(�

m
EX)φm(X)dX,

which is precisely the integral in the expression for γ(s, π1×π̌2, ψ) in Proposition 4.1.
Hence Im �= 0 and we obtain Theorem 5.4.

Theorem 5.4. Suppose π1
∼= c-Ind

GLn(F )
E×J(β,a)(λ̃1) and π2

∼= c-Ind
GLn(F )
E×J(β,a)(λ̃2) are

unitary supercuspidal representations of GLn(F ) associated to the same endo-class
and (J, λ) is the corresponding cover as above. Assume π2 �∼= π1 ⊗ (χ ◦ det) for any
unramified character χ of F×. Then Ir = 0 for r < m and

Cψ(s, π1 × π2) = υ−1vol(J ∩N)−1vol(J ∩N)−1ωπ2
(−1)nγ(s, π1 × π̌2, ψ).

5.3. The case τ1 ∼= τ2. In this case, as noted in §4.3, we may take π1
∼= π2 which

henceforth will be denoted as π. Throughout §5.3, we do not assume π is unitary.
Let τ denote the representation τ1 ∼= τ2. We follow the paradigm of [4, §4.2] to
reduce the calculation of the local coefficient to that associated with an unramified
principal series representation of GL2(k), where k is an unramified field extension
of E (see below). In this latter situation, the local coefficient was first computed
by Casselman [11] which we review below. (See [20] for a treatment of ramified
principal series representations via the theory of types and covers.) Let us first
collect certain properties of the cover (J ′, λ′) (cf. §3.2) in this situation.



654 YEONGSEONG JO AND M. KRISHNAMURTHY

Fix a maximal simple type (J1, λ1) associated to a simple stratum [a, k, 0, β]
contained in π as in Proposition 2.3. Let (JL, λL) be the corresponding t-type
in L, namely, JL = J1 × J1 and λL = λ1 × λ1. Recall associated to this data
is another simple stratum [a′, 2k, 0, β′] in A = M2n(F ) with associated subgroups
H1(β′, a′) ⊆ J1(β′, a′) ⊆ J(β′, a′). By definition J ′ is a subgroup of J(β′, a′)
containing H1(β′, a′). According to [5, Theorem (7.2.17)] there is a representation η
of J(β′, a′) so that λ′ is the natural representation of J ′ on the space of J1(β′, a′)∩N -

fixed vectors in η and η = Ind
J(β′,a′)
J′ λ′. In the terminology of loc. cit., the parabolic

subgroup P is subordinate to (J(β′, a′), η) and (J1, λ1) is the associated maximal
simple type of (J(β′, a′), η). This entails a support preserving isomorphism of Hecke
algebras H(G, λ′) ∼= H(G, η), meaning if φ′ ∈ H(G, λ′) has support J ′gJ ′ for some
g ∈ G, then its image φ ∈ H(G, η) has support J(β′, a′)gJ(β′, a′), and the space
of functions supported on a double coset is one dimensional (cf. [5, 7.2.19]). By
[5, (5.6.6)], H(G, η) is an affine Hecke algebra.

Let k be the unramified extension of degree n/d over E with k× ⊂ K(b). Put
C = Endk(V ), c′ = a′ ∩ C = b′ ∩ C, and choose the decomposition V = V1 ⊕ V2 so
that it is a k-decomposition subordinate to the ok-order c

′. Select an ok-basis of the
lattice chain L so that G′ := C× is identified with GL2(k) and c′ is identified with

c
′ =

(
ok ok

pk ok

)
.

Utilizing this basis construct an oE-basis of the lattice chain L as in [5, (5.5.2)] so
that V = V1 ⊕ V2 is also an E-decomposition that is subordinate to a′. With this
configuration, the following properties hold [5, (7.6.17)]:

(1) J(β′, a′) ∩ G′ = I ′, where I ′(= U(c′)) =
(

o
×
k

ok

pk o
×
k

)
is the standard Iwahori

subgroup of GL2(k);
(2) P ∩G′ = B′ is the standard Borel subgroup of G′ and is subordinate to the

simple type (I ′, 1I′) in G′ (1I′ is the trivial character of I ′);
(3) L∩G′ = A′ ∼= k××k× is the diagonal torus inG′ and B′ = A′U ′, U ′ = N∩G′

is the upper triangular matrix consisting of 1’s on the diagonal.

Let K ′ = GL2(ok) denote the maximal compact subgroup and let A′
0 = A′ ∩K ′.

Let W = NG′(A′)/A′ be the Weyl group and let W̃ = NG′(A′)/A′
0 denote the affine

Weyl group. Let X∗ = X∗(A
′) denote the group of cocharacters of A′. It is a free

abelian group of rank 2 and is identified with Z2 as follows: to the pair (m,n)
corresponds the cocharacter which sends z in the multiplicative group k× to the
diagonal matrix

(
zm

zn

)
. We write Λ′

+ to denote the set of dominant weights given
by A′

+/A
′
0 where

A′
+ = {a ∈ A′ : a(I ′ ∩ U ′)a−1 ⊆ (I ′ ∩ U ′)}.

It corresponds to the set of all pairs (m,n) satisfying m ≥ n. There is a canonical
isomorphism A′/A′

0
∼= X∗ under which a cocharacter μ corresponds to the class of

the element μ(�k). Consequently W̃ = X∗ �W.

We note that elements in W̃ may be viewed as elements in G since G′ is a

subgroup of G. Then W = {1,w0}. It is a well-known fact that W̃ can also be
viewed as an extension of a Coxeter group: Namely, put

t =

(
1

�k

)
, s0 =

(
�−1

k

�k

)
, and s1 = w0;
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then ts1t
−1 = s0 and s20 = s21 = (s0s1)

3 = 1. Let R ≤ W̃ be the subgroup generated

by the elements {s0, s1}; it is a Coxeter group. One has W̃ = 〈t〉�R. Hence every

w ∈ W̃ has a unique expression

(5.7) w = tksj1sj2 . . . sj� ,with sji ∈ {s0, s1},

where � = �(w) is the smallest number of sj needed and is called the length of w.
It satisfies the formula

q
�(w)
a = [I ′wI ′ : I ′] = [I ′ : I ′ ∩ wI ′w−1].

(Observe that qa = [ok : pk].)

Suppose the Haar measure on G′ is so that vol(I ′) = 1. For w ∈ W̃, let
ϑ′
w ∈ H(G′, 1′I) denote the characteristic function of the double coset I ′wI ′. For a

cocharacter μ, this is interpreted as the characteristic function of the double coset
I ′μ(�k)I ′. The collection {ϑ′

w}w∈W̃ forms a C-basis for the algebra H(G′, 1′I) and
the following relations are known:

ϑ′
w1

� ϑ′
w2

= ϑ′
w1w2

if �(w1w2) = �(w1) + �(w2),(5.8)

ϑ′
w0

� ϑ′
w0

= (qa − 1)ϑ′
w0

+ qaϑ
′
1.(5.9)

If 1k is the trivial character of k×, then 1k × 1k is a supercuspidal representation
of A′ whose associated type is given by the compact open subgroup A′

0
∼= o

×
k
×

o
×
k

and its trivial character. The pair (I ′, 1I′), which is a simple type in G′, is
a G′-cover of (A′

0, 1A′
0
) whose associated maximal simple type is (o×

k
, 1

o
×
k

). We

identify H(A′, 1A′
0
) = H(k×, 1

o
×
k

) ⊗ H(k×, 1
o
×
k

) and H(L, λL) = H(GLn(F ), λ1) ⊗
H(GLn(F ), λ1). By [5, (7.6.20)], there are canonical algebra isomorphisms Ψ :
H(G′, 1I′) −→ H(G, λ′) and Ψ′ : H(A′, 1A′

0
) −→ H(L, λL) so that the following

diagram is commutative:

(5.10) H(A′, 1A′
0
)

jB′

��

Ψ′
�� H(L, λL)

jP

��
H(G′, 1I′)

Ψ
�� H(G, λ′),

where the vertical maps jB′ and jP realize the (normalized) induction functor ιG
′

B′

and ιGP , respectively, as explained in loc. cit. To keep notations short, we write H
to denote Hecke algebra H(G, λ′) and H′ to denote the Hecke algebra H(G′, 1I′).

Observe that the Hecke algebra H is supported on J ′W̃J ′. The representation

λL extends to a representation of A′ via λ̃L (since k× ⊂ J̃1) and to a representation
of W via permutation of vectors in tensor products. We denote this extended

representation of W̃ � JL as λ̇L. For w ∈ W̃, let ϑw ∈ H denote the (normalized)
element so that

Supp(ϑw) = J ′wJ ′ with ϑw(w) = vol(J ′)−1vwλ̇L(w),

where vw =
(

vol(I′wI′)
volJ′ (J′wJ′)

)1/2

with volJ′(J ′wJ ′) = [J ′wJ ′ : J ′], a factor that is inde-

pendent of any Haar measure on G. Let a ∈ W̃ denote the element a =

(
�k

1

)
.
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In general, there is an ambiguity up to a scalar in describing an isomorphism be-
tween H′ ∼= H, the isomorphism Ψ above is fixed (see [5, (7.6.24)]) by stipulating

(5.11) Ψ(ϑ′
a) = ϑa.

(The normalizing factors “δP ” and “δQ” in loc. cit. are absorbed as “vw” in the
definition of ϑw.)

In what follows, we write Σw to denote the set of right cosets

Σw = J ′/(J ′ ∩ J ′w),w ∈ W̃.

We need to determine the effect of Ψ on all basis elements ϑw,w ∈ W̃. To that end,
we start with the following:

Lemma 5.5. Keep the above notation. Then, for s := s1 = w0, we have

Ψ(ϑ′
s) = ωπ(−1)ϑs.

Proof. Since the space of functions supported on a double coset is one dimensional,
we have Ψ(ϑ′

s) = csϑs for some scalar cs ∈ C×. The quadratic relation ϑ′
s � ϑ

′
s =

qaϑ
′
1 + (qa − 1)ϑ′

s implies that

(5.12) c2s(ϑs � ϑs) = Ψ(ϑ′
s � ϑ

′
s) = qaϑ1 + cs(qa − 1)ϑs.

On the other hand

(ϑs � ϑs)(s) =

∫
J′sJ′

ϑs(x)ϑs(x
−1s)dx

= vol(J ′)

∫
J′sJ′/J′

ϑs(x)ϑs(x
−1s)dx = vs

∑
j∈Σs

λ̇L(s)ϑs(sj
−1s).

Using the Iwahori factorization of J ′, one sees that the map n(x) =
(
In x

In

)
�→ x

gives a bijection between

Σs
∼= �−1

E H1(β, a)/�EJ(β, a),

and that J ′sJ ′ = J ′s(J ′∩N). Let us write jx to denote the matrix
(
In x

In

)
. Writing

j = n(y) in the above summand, we see that

(5.13) sn(−y)s ∈ J ′sJ ′ ⇔ sn(−y)sn(x)s ∈ J ′

for some x ∈ �−1
E H1(β, a). Using the Bruhat decomposition (for y �= 0)

s

(
In −y

In

)
s =

(
y−1 In

−y

)
s

(
In −y−1

In

)
,

we see that

(5.13) ⇔
(
y−1 In

−y

)(
In

x− y−1 In

)
∈ J ′

which in turn implies that x, y ∈ J(β, a)× = J(β, a). Hence, for y such that sjys
belongs to the support of ϑs,

ϑs(sjys) = vol(J ′)−1vsωπ(−1)(λ1(y
−1)⊗ λ1(y))λ̇L(s).

Now, by choosing an eigenbasis for the operator λ1(y) acting on W1 (the space of

λ1) we find that the trace of the operator (λ1(y
−1)⊗λ1(y))λ̇L(s) acting on W1⊗W1

is given by

Tr((λ1(y
−1)⊗ λ1(y)) λ̇L(s)) = dim(W1)(= dim(λ1)).
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Put

Σ′
s =

{
j ∈ Σs : ϑs(sj

−1s) �= 0
}
.

Evaluating both sides of (5.12) at s, then multiplying by the permutation operator

λ̇L(w0) on the left and then taking the trace, we obtain

(5.14) vol(J ′)−1c2sv
2
sωπ(−1)dim(λ1)|Σ′

s| = vol(J ′)−1cs(qa − 1)vsdim(λ1)
2

which yields cs = ωπ(−1) (qa−1)dim(λ1)
|Σ′

s|vs
. On the other hand, evaluating both sides

of (5.12) at the identity element gives

vol(J ′)−2c2sv
2
svol(J

′sJ ′) = vol(J ′)−1qa.

Since vol(I ′sI ′) = qa, it follows from this that c2s = 1. Now, from (5.14) we obtain

cs = ωπ(−1) and that dim(λ1) = |Σ′
s|vs(qa − 1)−1. �

Remark 3. The dimension formula

dim(λ1) = |Σ′
w0
|vw0

(qa − 1)−1

generalizes the case of level-zero representations established by R. Howe [15, Ap-
pendix 3].

Next, in W̃ we have the relation ts0 = a = s1t. It follows from (5.8) that

ϑ′
t � ϑ

′
s0 = ϑ′

a = ϑ′
s1 � ϑ

′
t

in the Hecke algebra H′. We now show that the analogue of this holds in H:

Lemma 5.6. Keeping the hypothesis of Lemma 5.5, for elements s0, t and a in W̃
as above, we have ϑt � ϑs0 = ϑa = ϑs1 � ϑt. As a result

Ψ(ϑ′
s) = ωπ(−1)ϑs for s = s0, t.

Proof. The function ϑt � ϑs0 is supported on J ′tJ ′s0J
′. It is a direct calculation to

see that t(J ′∩N)t−1 ⊂ J ′∩N and s0(J
′∩N)s0 ⊂ J ∩N and therefore J ′tJ ′s0J

′ =
J ′ts0J

′. Similarly ϑs1 � ϑt is supported on J ′s1J
′tJ ′ = J ′s1tJ

′. Let us evaluate
ϑt � ϑs0 at ts0 = a:

(ϑt � ϑs0)(ts0) =

∫
J′tJ′

ϑt(u)ϑs0(u
−1ts0)du =

∑
j∈Σt

∫
J′
ϑt(jtz)ϑs0(z

−1t−1j−1ts0)dz

= vt
∑
j∈Σt

λ̇L(t)ϑs0(t
−1j−1ts0).

(5.15)

Using the Iwahori factorization of J ′ one checks that

• J ′ ∩ tJ ′t−1 = J ′ ∩N · J ′
L · t(J ′ ∩N)t−1

• J ′ ∩ s0J
′s−1

0 = s0(J
′ ∩N)s−1

0 · J ′
L · (J ′ ∩N)

Hence we may identify

Σt =

(
In �−1

k
H1(β, a)

/
J(β, a)

In

)
; Σs0 =

(
In

�kJ(β, a)
/
�kH

1(β, a) In

)
.

Now ϑs0(t
−1j−1ts0) �= 0 ⇔ t−1j−1ts0 ∈ J ′s0J

′. Writing j = n(x), x ∈ �−1
k

H1(β, a),
we see that

t−1n(−x)ts0 ∈ J ′s0J
′ ⇔ t−1n(−x)ts0n(y)s0 ∈ J ′
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for some y ∈ �kJ(β, a). Since t
−1n(−x)t = n(−x�k) and s0n(y)s0 = n(�−1

k
y�−1

k
),

the latter condition holds if and only if x ∈ J(β, a). Consequently

(ϑt � ϑs0)(ts0) = vol(J ′)−1vtvs0 λ̇L(ts0) = vol(J ′)−1vtvs0 λ̇L(a).

We claim that vtvs0 = va. To see this note that

volJ′(J ′tJ ′)volJ′(J ′s0J
′) = vol(H1(β, a)/�kJ(β, a))vol(�kJ(β, a)/�kH

1(β, a))

= [H1(β, a) : �kH
1(β, a)]

which equals volJ′ (J ′aJ ′) = [�−1
k

H1(β, a) : H1(β, a))]. Thus (ϑt �ϑs0)(ts0) = ϑa(a)
proving

ϑt � ϑs0 = ϑa.

Next, we prove (ϑs1 � ϑt)(s1t) = ϑa(a):

(ϑs1 � ϑt)(s1t) =

∫
J′s1J′

ϑs1(u)ϑt(u
−1s1t)du =

∑
j∈Σs1

∫
J′
ϑs1(js1z)ϑt(z

−1s1j
−1s1t)dz

= vs1
∑

j∈Σs1

λ̇L(s1)ϑt(s1j
−1s1t),

where Σs1 =

(
In �−1

k
H1(β, a)

/
�kJ(β, a)

In

)
as in the proof of Lemma 5.5. As

above, write j = n(x), x ∈ �−1
k

H1(β, a), then

s1n(−x)s1t ∈ J ′tJ ′ ⇔ t−1n(y)s1n(−x)s1t ∈ J ′ for some y ∈ Σt

⇔ t−1n(y)tn(−�−1
k

x) ∈ J ′

⇔ x ∈ H1(β, a).

Consequently

(ϑs1 � ϑt)(s1t) = vol(J ′)−1vs1vt
∑

x∈H1(β,a)/�kJ(β,a)

λ̇L(s1)λ̇L(t)

= vol(J ′)−1vs1vtvol(H
1(β, a)/�kJ(β, a))λ̇L(a).

(5.16)

But

volJ′(J ′s1J
′)1/2volJ′(J ′tJ ′)1/2

vol(H1(β, a)/�kJ(β, a))

=
vol(�−1

k
H1(β, a)/�kJ(β, a))

1/2vol(H1(β, a)/�kJ(β, a))
1/2

vol(H1(β, a)/�kJ(β, a))

= [�−1
k

H1(β, a) : H1(β, a)]1/2

and hence the product of the volume factors in the last equality in (5.16) equals va
proving

ϑs1 � ϑt = ϑa.

To conclude, since Ψ is support preserving, for s = s0, t, we have Ψ(ϑ′
s) = csϑs

for some cs ∈ C×. Applying Ψ to the relation ϑ′
a = ϑ′

s1 � ϑ′
t, it follows from

Lemma 5.5, (5.11) and the above relation that

ctωπ(−1)(ϑs1 � ϑt) = ϑa ⇒ ct = ωπ(−1).

Likewise, using ϑt � ϑs0 = ϑa, it follows that cs0 = ωπ(−1). �
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Lemma 5.7. For elements s0 and s1 in W̃ as above, let α∨ be the simple coroot
corresponding to s1 = w0. Then

ϑs1 � ϑs0 = ϑα∨ .

Proof. Since s1(J
′∩N)s1 ⊂ J ′∩N and s0(J

′∩N)s0 ⊂ J ′∩N , the function ϑs1 �ϑs0

is supported on J ′s1J
′s0J

′ = J ′s1s0J
′. Now we evaluate at s1s0 = α∨(�k):

ϑs1 � ϑs0(s1s0) =

∫
J′s1J′

ϑs1(u)ϑs0(u
−1s1s0)du

=
∑

j∈Σs1

∫
J′
ϑs1(js1z)ϑs0(z

−1s1j
−1s1s0)dz

= vs1
∑

j∈Σs1

λ̇L(s1)ϑs0(s1j
−1s1s0).

As in Lemma 5.6, writing j = n(x), x ∈ �−1
k

H1(β, a), we have

s1n(−x)s1s0 ∈ J ′s0J
′ ⇔ s0n(−y)s1n(−x)s1s0 ∈ J ′ for some y ∈ �kJ(β, a)

⇔ n(−�−2
k

(x+ y)) ∈ J ′,

which implicates x = y = 0. Combining these together, we have

(ϑs1 � ϑs0)(s1s0) = vol(J ′)−1vs1vs0 λ̇L(s1)λ̇L(s0) = vol(J ′)−1vs1vs0 λ̇L(s1s0).

But

volJ′(J ′s1J
′)volJ′(J ′s0J

′)

= vol(�−1
k

H
1(β, a)

/
�kJ(β, a))vol(�kJ(β, a)/�kH

1(β, a))

= [�−1
k

H1(β, a) : �kH
1(β, a)]

= volJ′(J ′α∨(�k)J
′).

Thus vs1vs0 = vα∨ and (ϑs1 � ϑs0)(s1s0) = ϑα∨(α∨) proving the lemma. �

5.3.1. The unramified principal series representation of G′ = GL2(k). We continue
with the Haar measure on G′ that assigns I ′ unit volume. We have the following

decompositions G′ = I ′W̃I ′ and K ′ = I ′∪I ′w0I ′. Following Bernstein, for μ ∈ Λ′
+,

let θ′μ = q
−�(μ)/2
a ϑ′

μ. For μ ∈ X∗, write μ = μ+ − μ− with μ+, μ− ∈ Λ′
+, and then

define θ′μ = θ′μ1
� θ′−1

μ2
. This is well-defined and θ′μ � θ′ν = θ′μ+ν for all μ, ν ∈ X∗.

The commutation relation between ϑ′
w0

and θ′μ is given by the formula (cf. [22]):

(5.17) θ′μ � ϑ′
w0

− ϑ′
w0

� θ′w′
0(μ)

= (qa − 1)
θ′μ − θ′w0(μ)

1− θ′−α∨
.

Let H′
K′ be the finite dimensional subalgebra of H′ generated by ϑ′

w for w ∈
W and let H′

ab be the commutative subalgebra of H′ generated by ϑ′
μ, μ ∈ Λ′

+,
together with their inverses. Then H′

ab = C[A′/A′
0] is the group algebra of A′/

A′
0 consisting of functions φ : A′/A′

0 −→ C of finite support with product given
by convolution. In particular, H′

ab
∼= C[t±1

1 , t±1
2 ], where t1, t2, are indeterminates.

Since w0(μ) = μ − 〈μ, α〉α∨, the fraction
θ′
μ−θ′

w0(μ)

1−θ′
−α∨

belongs to H′
ab. The following

result follows from the proof of [22, Proposition 3.7]. (See also [12].)
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Proposition 5.8. The elements ϑ′
w � θ′μ, w ∈ W, μ ∈ X∗, form a C-basis of H′.

Alternately, the multiplication map

m : H′
K′ ⊗C H′

ab −→ H′

given by m(ϑ⊗ θ) = ϑ � θ is a linear isomorphism.

Let s′ denote the inertial class of the pair (A′, 1k × 1k) in G′ and let t′ denote

the corresponding inertial class in A′. Then the category Rs
′
(G′) consists of those

representations (π, V ) generated by their I ′-fixed vectors and V I′
is naturally an

H′-module. The map V �→ V I′
is an equivalence of categories Rs

′
(G′) ∼= H′−Mod.

Recall X(A′) the group of unramified quasicharacters of A′ which is equipped
with the structure of a complex torus whose ring of regular functions is C[A′/A′

0]. It

can be identified with (C/ 2πi
log qa

Z)2 ∼= (C×)2. For χ ∈ X(A′), let ι(χ) := ιG
′

B′(χ) be

the unramified principal series representation of G′ and let F(χ)(= FB′(χ)) denote

the space of this representation. The dimension of F(χ)K
′
is 1 and it follows from

the Iwasawa decomposition of G′ that the function φK′,χ given by

φK′,χ(uak) = δ
1/2
B′ (a)χ(a) for u ∈ U ′, a ∈ A′ and k ∈ K ′

is a basis for F(χ)K
′
. On the other hand, the dimension of F(χ)I

′
is 2 and the

functions φ1,χ and φw0,χ given by

φ1,χ (uak) =

{
δ
1/2
B′ (a)χ(a), k ∈ I ′

0, k /∈ I ′

and

φw0,χ(uak) =

{
δ
1/2
B′ (a)χ(a), k ∈ I ′w0I ′,

0, k /∈ I ′w0I ′

form a basis of F(χ)I
′
. Since K ′ = I ′∪I ′w0I ′, it follows that φK′,χ = φ1,χ+φw0,χ.

Proposition 5.9 gives the complete structure of F(χ)I
′
. The result is not new

and an equivalent formulation in a more general context can be found in [26]. One
can also find parallel discussions in [18, 25]. We include a straightforward proof in
our setting for the sake of completeness.

Proposition 5.9. Keeping the above notation, we have the following:

(a) φ′
w0,χ is an eigenvector for H′

ab. To be more precise, for μ ∈ Λ′
+ we have

ιG
′

B′(χ)(θ′μ)φ
′
w0,χ = w0(χ)(μ(�k))φ

′
w0,χ.

(b) Let ι′ : F(χ)I
′ → H′

K′ denote the map ι′(φ) = φ̌|K′ , i.e., ι′(φ)(k) = φ(k−1).
Then ι′ is well-defined and is an H′

K′-module isomorphism for the left action
on H′

K′ given by convolution.
(c) As H′-modules, we get an isomorphism

F(χ)I
′ ∼= H′ ⊗H′

ab
Cw0(χ).

Proof. Part (a) follows from [10, Lemma 3.9] and the definition of θ′μ. For (b), we
first check that ι(φ) is an element of H′

K′ , i.e., it is a bi-I ′-invariant function on
K ′. Let i, i′ ∈ I ′ and k ∈ K ′, since K ′ = I ′WI ′, we may take k ∈ W = {1,w0}.
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Using the Iwahori factorization, decompose i−1 = iU ′ iT ′iU ′ , iU ′ ∈ U ′, iT ′ ∈ T ′ and

iU ′ ∈ U
′
. Then

ι′(φ)(i′ki) = φ(i−1k−1) = δ
1/2
B′ (iT ′)χ(iT ′)φ(iU ′k−1)

= φ(iU ′k−1) = φ(k−1kiU ′k−1) = φ(k−1) = ι′(φ)(k).

Here, the last equality follows since kiU ′k−1 ∈ I ′ for k ∈ W. To verify that ι′ is an

H′
K′-module homomorphism: Suppose that ϑ′

0 ∈ H′
K′ and φ ∈ F(χ)I

′
. We have

(ι′(ϑ′
0 · φ))(k) = (ϑ′

0 · φ)(k−1) =

∫
K′

ϑ′
0(x)φ(k

−1x)dx

=

∫
K′

ϑ′
0(x)ι

′(φ)(x−1k)dx = (ϑ′
0 � ι

′(φ))(k).

To see that ι′ is an isomorphism, it is enough to check that it takes a basis of F(χ)I
′

to a basis of H′
K′ . This is clear since ι′(φ′

w,χ) = ϑ′
w for w ∈ W. Finally, consider

the map from

(5.18) H′ ⊗H′
ab

Cw0(χ) → F(χ)I
′

given by ϑ′ ⊗ 1 �→ ϑ′ · φ′
w0,χ. This is clearly a morphism of H′-modules. To see

that the map is an isomorphism, observe that Part (a) and Proposition 5.8 together
imply that {ϑ′

w ⊗ 1 : w ∈ W} is a C-basis of H′ ⊗A′ Cw0(χ). On the other hand, we

also have the basis {φ′
1,χ, φ

′
w0,χ} of F(χ)I

′
and

ϑ′
1 ⊗ 1 �→ ϑ′

1 · φ′
w0,χ = φ′

w0,χ;

ϑ′
w0

⊗ 1 �→ ϑ′
w0

· φ′
w0,χ = c1φ

′
1,χ + c2φ

′
w0,χ.

To determine the complex numbers c1, c2, we apply the map ι′ to the second equa-
tion and use (b) to obtain:

ϑ′
w0

� ϑ′
w0

= c1ϑ
′
1 + c2ϑ

′
w0

from which it follows that c1 = qa, c2 = qa − 1. Hence the change of basis matrix
with respect to these bases is invertible establishing that the map (5.18) is an
isomorphism. �

Remark 4. Evaluating the second equation at w0, we obtain the volume formula

vol(B
′I ′ ∩ I ′w0I ′) = qa − 1.

Henceforth we assume that χ �= w0(χ) (such a χ is also called regular). Consider
the intertwining operator A(χ,w0) : F(χ) −→ F(w0(χ)) defined as in (5.1) for the
data (G′, A′, χ), i.e.,

A(χ,w0)(φ)(g) =

∫
U ′

φ(w0ug) du, φ ∈ ι(χ), g ∈ G′.

It defines a regular function on the domain of regular characters. Since χ is regular,
every G′-morphism from F(χ) to F(w0(χ)) is a scalar multiple of A(χ,w0). The
operator A(χ,w0) is in particular a K ′-homomorphism, therefore it takes φ′

K′,χ to

a scalar multiple of φ′
K′,w0(χ)

. This scalar has been computed by Casselman for a

general unramified principal series representation in [10]. In the current setting, his
formula takes the following shape:
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Lemma 5.10. Suppose χ = χ1 ⊗ χ2 in X(A′) is regular. Then

A(χ,w0)(φ
′
1,χ) = (cw0

(χ)− 1)φ′
1,χ +

1

qa
φ′
w0,χ

and

A(χ,w0)(φ
′
w0,χ) = φ′

1,χ +

(
cw0

(χ)− 1

qa

)
φ′
w0,χ,

where cw0
(χ) =

1− q−1
a χ1(�k)χ

−1
2 (�k)

1− χ1(�k)χ
−1
2 (�k)

. Consequently

A(χ,w0)(φ
′
K′,χ) = cw0

(χ)φ′
K′,w0(χ)

.

Fix an additive character ψ′ of k that is unramified and let us look at the cor-
responding local coefficient Cψ′(χ). Let ι(χ)w0

denote B′-submodule of functions
in ι(χ) supported on the big cell B′w0U

′. As in §5, there is a unique non-zero
Whitaker functional Ω′

χ defined on ι(χ) so that, for φ ∈ ι(χ)w0
,

Ω′
χ(φ) =

∫
U ′

φ(w0u)ψ
−1(u)du.

This formula holds on all of ι(χ) as a principal value integral. By definition of the
local coefficient Cψ′(χ), we have

(5.19) Cψ′(χ)(Ω′
w0(χ)

◦A(χ,w0)) = Ω′
χ.

As mentioned in the beginning of §5.3, the explicit form of Cψ′(χ) is known for
a general unramified principal series representation by the work of Casselman and
Shalika [11]. In our setting, their result is as follows.

Lemma 5.11. For any χ = χ1 ⊗ χ2 ∈ X(A′), we have

Ω′
χ(φ

′
1,χ) = −q−1

a χ1(�k)χ
−1
2 (�k) and Ω′

χ(φ
′
w0,χ) = 1.

If in addition χ is regular, by evaluating both sides of equation (5.19) at the spherical
function φ′

K′,χ = φ′
1,χ + φ′

w0,χ, we obtain

Cψ′(χ) =
1− χ1(�k)χ

−1
2 (�k)

1− q−1
a χ−1

1 (�k)χ2(�k)
.

5.3.2. Computation of the local coefficient for non-split cases. In this subsection,
we transfer the above results from G′ to G using the support preserving algebra
isomorphism

H′ Ψ−→ H.

Recall the basis elements {ϑ′
w} and {ϑw} in H′ and H, respectively. As in the

case of G′, define θμ := q
−�(μ)/2
a ϑμ, μ ∈ Λ′

+. For an arbitrary μ ∈ X∗, write
μ = μ1 − μ2, μ1, μ2 ∈ Λ′

+, and set θμ = θμ1
� θ−1

μ2
.

Lemma 5.12. Keep the above notation and assume that the Haar measures on G′

are normalized so that I ′ has unit volume. Then the following relations hold:

θμ1
� θμ2

= θμ1+μ2
for μ1, μ2 ∈ X∗;

ϑw0
� ϑw0

= qaϑ1 + ωπ(−1)(qa − 1)ϑw0
.
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Proof. The first relation follows since J ′�μ
EJ

′�μ′

E J ′ = J ′�μ+μ′

E J ′, which in turn

follows from the Iwahori decomposition J ′ = J ′ ∩ N · JL · J ′ ∩ N and (3.6). The
second assertion follows from Lemma 5.5 and applying Ψ to the quadratic relation
(5.9). �

Let Hab be the abelian subalgebra of H generated by ϑμ for μ ∈ Λ′
+ and their

inverses. For μ ∈ X ′
∗, write Ψ(ϑ′

μ) = ξμϑμ for ξμ ∈ C×. Lemma 5.12 implies that
μ �→ ξμ defines a character of X∗, or equivalently, an unramified character of A′.
We denote this character as ξ.

Lemma 5.13. ξ is the trivial character of A′.

Proof. Recall we have elements a, s0, s1 ∈ W̃ and note that a corresponds to the
dominant weight (1, 0). Since Ψ(ϑ′

a) = ϑa by definition, it follows that (i) Ψ(ϑ′
am) =

ϑam for all m ∈ Z. On the other hand,

Ψ(ϑ′
α∨) = Ψ(ϑ′

s1 � ϑ
′
s0) = ϑs1 � ϑs0 = ϑα∨ .

Here, the second equality uses Lemma 5.5 and Lemma 5.6 and the third equality
follows from Lemma 5.7. Note α∨ corresponds to the weight (1,−1), put μ =
(1, 0)−(1,−1). Then ϑ′

μ = ϑ′
a�ϑ

′−1
α∨ and ϑμ = ϑa�ϑ

−1
α∨ . It follows that Ψ(ϑ′

μ) = ϑμ.

This in turn implies that (ii) Ψ(ϑ′
bn) = ϑbn , n ∈ Z, where b =

(
1
�k

)
. Now, (i) and

(ii) combined implies that Ψ(ϑ′
μ) = ϑμ for any μ ∈ X∗ and hence the assertion. �

Let HK′ be the subalgebra of functions in H supported on J ′K ′J ′ = J ′WJ ′.
Then Ψ restricts to a support preserving isomorphism between subalgebras:

H′
K′ ∼= HK′ and H′

ab
∼= Hab.

By Proposition 5.8, we may write H as a “twisted” tensor product:

H ∼= HK′⊗̃CHab.

Next, for an unramified character χ ∈ X(L) of L, we turn our attention to
the space FP (σ ⊗ χ)λ′ of λ′-invariants which is an H-module (cf. §3.1). Note
W = W1 ⊗ W1 is the space of λL as well as λ′. There is a natural isomorphism
between

FP (σ ⊗ χ)λ′ ⊗C W −→ FP (σ ⊗ χ)λ
′

given by φ⊗w �→ φ(w). By [18, Lemma 3.2.4], any f ∈ FP (σ⊗ χ)λ
′
is determined

by its restriction to K ′. For w ∈ W , we have the function ϕw ∈ c-Ind λ̃L and
the corresponding function fw = fϕw

∈ FP (σ ⊗ χ)λ
′
(supported on PJ ′) which of

course depends on χ as in §5.2. We set

f1,w,χ = vol(J ′)−1fϕw
.

Using the extended representation λ̇L, we may also define a similar function f =
fw0,w,χ ∈ FP (σ ⊗ χ)λ

′
supported on Pw0J

′ as follows:

f(pw0j) = vol(J ′)−1χ(p)δ
1/2
P (p)σ(p)ϕλ̇L(w0)λ′(j)w.

This is well-defined since the map w �→ ϕw is J̃L-intertwining. For w ∈ W, the
resulting map

φw,χ : W −→ FP (σ ⊗ χ) given by w �→ fw,w,χ

is clearly a J ′-embedding, i.e., it belongs to F(σ⊗χ)λ′ . As explained in [18, Lemma
3.2.9], the set {φ1,χ, φw0,χ} forms a basis of FP (σ ⊗ χ)λ′ .
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If φ ∈ F(σ ⊗ χ)λ′ , w ∈ W , and x ∈ J ′WJ ′, then φ(w)(x) belongs to the λL-

isotypic component (c-Ind λ̃L)
λL ∼= W and consequently w �→ φ(w)(x) defines an

element in EndC(W ). By [18, Lemma 3.2.6] the map

ι2 : FP (σ ⊗ χ)λ′ → HK′(G, λ̌′)

given by ι2(φ)(x) = φ(w)(x), x ∈ J ′WJ ′, is HK′(G, λ̌′)-equivariant. Then compos-
ing ι2 with the anti-isomorphism h �→ ȟ from HK′(G, λ̌′) → HK′ , we obtain the
HK′-equivariant map ι : FP (σ ⊗ χ)λ′ → HK′ .

We have the following analogue of Proposition 5.9 for the group G:

Proposition 5.14 ([18, Proposition 3.2.10.]). Keeping the above notation, the fol-
lowing hold:

(a) φw0,χ is an eigenvector for Hab. More precisely, for μ ∈ Λ′
+, we have

ιGP (σ ⊗ χ) (θμ)φw0,χ = w0(χ)(μ(�k))φw0,χ.

(b) The map ι (defined above) is an HK′-module isomorphism.
(c) As H-modules, the map

H⊗Hab
Cw0(χ)

∼= FP (σ ⊗ χ)λ′

given by ϑ⊗ 1 �→ ϑ · φw0,χ is an isomorphism.

Observe that χ|A′ is an unramified character of A′, we simply write χ to denote
this character. Thus we can also form the induced representation FB′(χ). Let

Φχ : FB′(χ)I
′ → FP (σ ⊗ χ)λ′

denote the linear isomorphism extending Φχ(φ
′
1,χ) = φ1,χ and

Φχ(φ
′
w0,χ) = ωπ(−1)(vw0

φw0,χ).

Lemma 5.15 is a reformulation of [18, Proposition 3.2.11].

Lemma 5.15. The diagram below commutes with Φ = Φχ.

H×FP (σ ⊗ χ)λ′ �� FP (σ ⊗ χ)λ′

H′ ×FB′(χ)I
′

Ψ×Φχ

��

�� FB′(χ)I
′
,

Φχ

��

where the horizontal arrows are given by the module action of H and H′ on FP (σ⊗
χ)λ′ and FB′(χ)I

′
, respectively. Put differently, Φ∗(FP (σ ⊗ χ)λ′) ∼= FB′(χ)I

′
as

H′-modules.

Proof. We need to check

(5.20) Φχ(ϑ
′ · φ′) = Ψ(ϑ′) · Φχ(φ

′), ϑ′ ∈ H′, φ′ ∈ F(χ)I
′
.

Since by part (c) of Proposition 5.9, any φ′ ∈ FB′(χ)I
′
can be written as φ′ =

ϑ′
0 · φ′

w0,χ for some ϑ′
0 ∈ H′, it is sufficient to verify (5.20) for φ′ = φ′

w0,χ. Further,
by Proposition 5.8, we may reduce the verification to ϑ′ = ϑ′

w0
or θ′μ ∈ A′.

Let us show Φχ(ϑ
′
w0

· φ′
w0,χ) = Ψ(ϑ′

w0
) · Φχ(φ

′
w0,χ). Since ϑ′

w0
· φ′

w0,χ = qaφ
′
1,χ +

(qa − 1)φ′
w0,χ, the left hand side is given by

Φχ(ϑ
′
w0

· φ′
w0,χ) = qaφ1,χ + ωπ(−1)(qa − 1)vw0

φw0,χ.
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On the other hand, by Lemma 5.5, the right hand side equals vw0
(ϑw0

·φw0,χ). Say,

ϑw0
· φw0,χ = c1φ1,χ + c2φw0,χ.

Apply ι to this equation to get ϑw0
�ι(φw0,χ) = c1ι(φ1,χ)+c2ι(φw0,χ). But ι(φw0,χ) =

v−1
w0

ϑw0
and ι(φ1,χ) = ϑ1. Using the quadratic relation satisfied by ϑw0

we obtain

c1 = qav
−1
w0

, c2 = (qa − 1)ωπ(−1), giving us the desired equality.
That Φχ(θ

′
μ · φ′

w0,χ) = Ψ(θ′μ) · Φχ(φ
′
w0,χ) follows from Lemma 5.13 and the fact

that φ′
w0,χ and φw0,χ are eigenfunctions for H′

ab and Hab, respectively, with the
same eigencharacter w0(χ). �

Recall the spherical function φ′
K′,χ ∈ FB′(χ)I

′
from Lemma 5.11, the line gen-

erated by this vector is invariant for the action of H′
K′ . Let us put φK′,χ =

φ1,χ + ωπ(−1)vw0
φw0,χ, then Φ(φ′

K′,χ) = φK′,χ and it follows from Lemma 5.15
that the line generated by φK′ is invariant for the action of HK′ . Since

HomG(FP (σ ⊗ χ),FP (σ ⊗ w0(χ))) ∼= HomH(FP (σ ⊗ χ)λ′ ,FP (σ ⊗ w0(χ))λ′),

the intertwining operatorA(χ, σ,w0) (see (5.1)) induces a natural map ofH-modules
from FP (σ⊗χ)λ′ −→ FP (σ⊗w0(χ))λ′ given by composition. Suppose χ|A′ is reg-

ular so that the representations ιGP (σ⊗χ), ιGP (σ⊗w0(χ)), ι
G′

B′(χ) and ιG
′

B′(w0(χ) are
all irreducible. In this circumstance, we have the following:

Proposition 5.16. Suppose χ = χ1 ⊗ χ2 ∈ X(L) is regular in the above sense.
Then

A(χ, σ,w0) ◦ φK′,χ = vol(J ′ ∩N)vw0
ωπ(−1)

1− q−1
a χ1(�k)χ

−1
2 (�k)

1− χ1(�k)χ
−1
2 (�k)

φK′,w0(χ).

Proof. From Lemma 5.15, it is clear that Φ = Φχ induces the equivalence

Φ∗ : HomH′(FB′(χ)I
′
,FB′(w0(χ))

I′
)

∼=−→ HomH(FP (σ ⊗ χ)λ′ ,FP (σ ⊗ w0(χ))λ′),

where Φ∗(A) = Φw0(χ) ◦A◦Φ−1
χ . By irreducibility, there exists a constant c(χ, σ) ∈

C× so that

(5.21) A(χ, σ,w0) = c(χ, σ)Φ∗(A(χ,w0)).

Evaluating both sides of (5.21) at φK′,χ, it follows from Lemma 5.10 and Lemma
5.15 that

A(χ, σ,w0) ◦ φK′,χ = c(χ, σ)Φ∗(A(χ,w0)) ◦ φK′,χ = c(χ, σ)cw0
(χ)φK′,w0(χ).

On the other hand, if we evaluate both sides of (5.21) at vw0
ωπ(−1)φw0,χ, we obtain

vw0
ωπ(−1)A(χ, σ,w0) ◦ φw0,χ = c(χ, σ)Φ∗(A(χ,w0)) ◦ (vw0

ωπ(−1)φw0,χ)

= c(χ, σ)(φ1,χ + (cw0
(χ)− q−1

a )vw0
ωπ(−1)φw0,χ).

Now, apply both sides of the second equation to an arbitrary w ∈ W and then
evaluate at 1 to get

(5.22)

vol(J ′)−1c(χ, σ)ϕw = vw0
ωπ(−1)A(χ, σ,w0)(fw0,w,χ)(1)

= vw0
ωπ(−1)

∫
N

fw0,w,χ(w
−1
0 n)dn

= vw0
ωπ(−1)

∫
J′∩N

fw0,w,χ(w
−1
0 n)dn

= vol(J ′)−1vw0
ωπ(−1)vol(J ′ ∩N)ϕλ̇L(w0)w

.
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Specializing to a symmetric tensor w, meaning of the form w = w1⊗w1, we conclude

(5.23) c(χ, σ) = vw0
ωπ(−1)vol(J ′ ∩N).

(Note that the constant c(χ, σ) is independent of χ). �

Let us return to the local coefficient defined in §5. Recall the induced represen-
tation IndGU (ψ) from §2.2. Let c-IndGU (ψ) denote the sub-representation consisting
of functions that are compactly supported modulo U . Let sgn denote the one-
dimensional representation of H′

K′ on C wherein ϑ′
w acts as (−1)�(w), w ∈ W. By

[12, Corollary 4.4] and [13, Theorem 3.4] applied for λ̌′, we have

c-IndG
′

U ′(ψ)I
′ ∼= H′ ⊗H′

K′ sgn
∼= c-IndGU (ψ)λ̌′

as H(G′, 1I′) ∼= H(G, λ̌′)-modules. Thus

(5.24) c-IndG
′

U ′(ψ)I
′ ∼= c-IndGU (ψ)λ̌′

as H(G′, 1I′) ∼= H(G, λ̌′)-modules.
Let ∗ denote the linear dual. We can linearly dualize (5.24) to obtain the follow-

ing isomorphism Ξ of dual spaces as H′ ∼= H-modules:

Ξ : IndG
′

U ′(ψ)I
′ (1)∼=

(
c-IndG

′

U ′(ψ)
∨)I′

(2)∼=
(
c-IndG

′

U ′(ψ)I
′
)∗

∼=
(
c-IndGU (ψ)λ̌′

)∗ (3)∼=
(
c-IndGU (ψ)

∨
)
λ̌′

(1)∼= IndGU (ψ)λ′ .

Here, (1) is given by the duality theorem [3, §3.5]; (2) and (3) follow from the
fact that for any smooth representation (π, V ) of G and a compact open subgroup

K ≤ G one has (V
∨
)K ∼= (V K)∗ (cf. [13, §3.1]).

Recall the Whittaker functional Ω′
χ in equation (5.19) which is defined with re-

spect to a level zero additive character. We need to shift this to get a functional with
respect to ψ which is of level one. To that end, we define Ω̃′

χ(f
′) = Ω′

χ(R(�k

1 )f
′),

f ′ ∈ ιG
′

B′(χ). Let ω′
χ : FB′(χ) → IndG

′

U ′(ψ) be the “Whittaker map” corresponding to

Ω̃′
χ determined by Frobenius reciprocity. We can transfer ω′

χ via the isomorphisms
Φχ and Ξ to get the map (ω′

χ)G of H-modules:

(5.25) FP (σ ⊗ χ)λ′
(ω′

χ)G �� IndGU (ψ)λ′

FB′(χ)I
′

Φχ

��

ω′
χ �� IndG

′

U ′(ψ)I
′
.

Ξ

��

On the other hand, let ωχ : FP (σ⊗χ) → IndGU (ψ) be the Whittaker map attached
to the Whittaker functional Ωχ through Frobenius reciprocity. Let

(ωχ)∗ : FP (σ ⊗ χ)λ′ → IndGU (ψ)λ′

be the corresponding map of H-modules. Since

HomG(FP (σ ⊗ χ), IndGU (ψ))
∼= HomH(FP (σ ⊗ χ)λ′ , IndGU (ψ)λ′)
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is one dimensional (cf. [11]), there is a scalar aχ so that

(5.26) (ωχ)∗ = aχ(ω
′
χ)G.

Specializing to χ = χs (see §5), we obtain (ωs)∗ := (ωχs
)∗, (ω

′
s)G := (ω′

χs
)G and

as := aχs
as functions on a rank-one complex torus whose ring of regular functions

is C[qs/2, q−s/2].

Proposition 5.17. Keeping the above notation, as is a monomial in qs/2. There
is an α ∈ C× and f ∈ Z so that for χs with ιG

′

B′(χs) irreducible (⇔ s �= ±1), we
have

(ωs)∗(φK′,χs
) = αq−(fs)/2(1− q−s−1

a )Ξ(W ′
s,sp).

Here, W ′
s,sp is the normalized Whittaker function on G′ (w.r.t. ψ) satisfying

W ′
s,sp(

�−1
k

1
) = 1.

Proof. First, the functions s �→ ω′
s and s �→ ωs are regular in a certain sense and

belong to the polynomial ring C[qs/2, q−s/2] (cf. [28, Lemma 2.2]). This implies
the same for (ωs)∗ and (ω′

s)G. (Note that Φχs
as a function of χs is regular.)

Consequently s �→ as is a polynomial in qs/2, q−s/2. On the other hand since
both (ωs)∗ and (ω′

s)G are non-zero, it follows that as must be a monomial. Write
as = αq−(fs)/2, α ∈ C×, f ∈ Z. Using Lemma 5.11 we see that

ω′
s(φ

′
K′,χs

) = (1− q−s−1
a )W ′

s,sp

for s �= ±1. Evaluating equation (5.26) at φ′
K′,χs

and chasing diagram (5.25) we
get the desired conclusion. �

Proposition 5.17 immediately implies Corollary 5.18 which is also the content
of [18, Corollary 4.1.7]. However, the result in loc. cit. is incomplete due to
undetermined “sign” factors and is also missing the crucial “monomial term” which
we believe should be present. We fix that here and note in passing that unlike the
proof in loc. cit. our proof does not rely on the theory of intertwining operators.

Corollary 5.18 (The functional equation for Whittaker functions). Suppose s �=
±1. Then

(ω−s)∗(φK′,χ−s
) = qfs

L(s+ 1, π × π̌)

L(−s+ 1, π × π̌)
(ωs)∗(φK′,χs

).

Proof. One simply has to observe that w0(χs) = χ−s and (4.6). We apply Propo-
sition 5.17 twice. �

We now present the precise shape of the local coefficient Cψ(s, π × π).

Theorem 5.19. Let π ∼= c-Ind
GLn(F )
E×J(β,A)(λ̃) be an irreducible supercuspidal repre-

sentation of GLn(F ). Then

(5.27) Cψ(s, π × π) = vol(J ′ ∩N)−1ωπ(−1)v−1
w0

q−fsL(1− s, π̌ × π)

L(s, π × π̌)

with f ∈ Z as in Proposition 5.17.

Proof. Since Cψ(s, π × π) is a rational function of q−s, it is enough to prove the
assertion on a Zariski open subset of X(L). In particular, we may assume the
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relevant induced representations are all irreducible. We apply (ω−s)∗ to both sides
of the equation in Proposition 5.16 and utilize Corollary 5.18 to get

(5.28)

ω−s ◦A(χs, σ,w0) ◦ φK′,χs

= vol(J ′ ∩N)vw0
ωπ(−1)

L(s, π × π̌)

L(s+ 1, π × π̌)
(ω−s ◦ φK′,χ−s

)

= vol(J ′ ∩N)vw0
ωπ(−1)qfs

L(s, π × π̌)

L(1− s, π × π̌)
(ωs ◦ φK′,χs

).

Now, appealing to the definition of Cψ(s, π × π) (cf. (5.2)), we obtain

C−1
ψ (s, π × π)(ωs)∗(φK′,χs

)

= vol(J ′ ∩N)vw0
ωπ(−1)qfs

L(s, π × π̌)

L(1− s, π × π̌)
(ωs)∗(φK′,χs

).

The result now follows since (ωs)∗(φK′,χs
) �= 0. �

Put

εLS(s, π × π, ψ) = vol(J ′ ∩N)−1ωπ(−1)v−1
w0

q−fs.

The integer can be viewed as the “Langlands-Shahidi conductor” and we denote it
as fLS(π × π, ψ). It is not difficult to check that its dependence on ψ is given by

fLS(π × π, ψ) = −n2�ψ + fLS(π × π),

where fLS(π × π) is independent of ψ (cf. [14, Theorem 2.1 (iv)]). Of course, for
us, �ψ = 1 by choice. In sum (5.27) takes the form

Cψ(s, π × π) = εLS(s, π × π, ψ)
L(1− s, π × π̌)

L(s, π × π̌)
.

5.4. Re-visiting the Plancherel constant. For any π1, π2 ∈ A0
n(F ), the

Plancherel constant is a scalar valued function μ(s, π1 × π2) ∈ C attached to the
pair (π1, π2) by the defining relation

A(−s, π2 × π1) ◦A(s, π1 × π2) = μ(s, π1 × π2)
−1

on a Zariski open subset of C. It is a rational function in q−s and clearly depends
on the measures defining intertwining operators. By [27, Proposition 3.11], we have

(5.29) μ(s, π1 × π2) = Cψ(s, π1 × π2)Cψ(−s, π2 × π1).

Now, we return to π1
∼= c-Ind

GLn(F )
E×J(β,a)(λ̃1) and π2

∼= c-Ind
GLn(F )
E×J(β,a)(λ̃2) as in §5

so that they are unitary and associated to the same endo-class. In the two cases
considered there, we have the following expressions for the Plancherel constant:

• Suppose π2 �∼= π1⊗(χ◦det) for any unramified character χ of F×. It follows
from Proposition 5.1 that

μ(s, π1 × π2) ≡ vol(J ∩N)−1vol(J ∩N)−1.

• Suppose π = π1
∼= π2. Applying Proposition 5.16 with χ = χs, we obtain

μ(s, π × π) = vol(J ′ ∩N)−2v−2
w0

L(1 + s, π × π̌)

L(s, π × π̌)

L(1− s, π × π̌)

L(−s, π × π̌)
.
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We begin with certain volume computations. Choose Haar measures dn on N
and dn on N satisfying the condition in §5.1 relative to our chosen ψ. In short,
we refer to (dn, dn) as a dual pair of measures. Let us normalize the measure on
L = GLn(F )×GLn(F ) so that

vol(H1(β, a)) =
volF (enp

m+1)vol(J ∩N)vol(J ∩N)

[(Un(F ) ∩ J(β, a)) : (Un(F ) ∩H1(β, a))]
.

This amounts to saying that the measure on L is so that

(5.30) υvol(J ∩N)vol(J ∩N) = 1,

where v is as in Proposition 4.1. Note that this is independent of the choice of the
dual pair (dn, dn). In fact, we have the following:

Lemma 5.20. For a dual pair of Haar measures (dn, dn), we have

vol(J ′ ∩N)vol(J ′ ∩N) = vol(J ∩N)vol(J ∩N) = qma .

Proof. It is clear that the product of volumes vol(J ∩ N)vol(J ∩ N) is invariant

under conjugation by
(

�m+1
E In

In

)
. Therefore

vol(J ∩N)vol(J ∩N) = vol(J ′ ∩N)vol(J ′ ∩N).

Since the cover (J ′, λ′) is the same in both cases, we may assume that we are in
the split case, i.e., the first bullet above, for the purpose of calculating the said
product of volumes. In this situation, with the measure on L normalized as above,
it follows from (5.30) and Theorem 5.4 that

Cψ(s, π1 × π2) = ωπ2
(−1)nγ(s, π1 × π̌2, ψ).

Appealing to (5.6), we have

Cψ(−s, π2 × π1)Cψ(s, π1 × π2)

= ωπ1
(−1)ωπ2

(−1)vol(J ∩N)−2vol(J ∩N)−2

×
∫
J(β,a)

W1((�
m
EX)−1)W2(�

m
EX)φm(X)dX

×
∫
J(β,a)

W1(�
m
EX)W2((�

m
EX)−1)φm(X)dX

= vol(J ∩N)−2vol(J ∩N)−2|Im|2.

Here, the second equality follows from Proposition 2.2 along with changing the
variable −X �→ X in one of the integrals. Combining (5.29) with the corresponding
expression for the Plancherel constant, we get

|Im|2 = vol(J ∩N)vol(J ∩N).

On the other hand, using the functional equation (4.2) and Proposition 4.1, we
obtain

1 = γ(1− s, π̌1 × π2, ψ)γ(s, π1 × π̌2, ψ) = υ2qma |Im|2.
Taking the normalization (5.30) into account, we conclude

vol(J ∩N)vol(J ∩N) = υ−1 = qma . �
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Remark 5. A different computation [4, Theorem 6.5] shows that the above product
of volumes is also given as

vol(J ′ ∩N)vol(J ′ ∩N) = q−
n2c(β)

d2 ,

where c(β) is “the generalized discriminant” as in [4, §6.4]. Equating the two
expressions for the product of volumes gives the relation

nc(β)

d2
= −m

e
.

This seems to generalize the result [32, §5A] which establishes this equality only
for tame supercuspidal representations.

Lemma 5.21. With the measure on the Levi subgroup L fixed as above and taking
the measure dn to be the one that underlies Proposition 5.16, for the corresponding
dual pair (dn, dn) we have

vol(J ′ ∩N) = q
m+1

2
a v−1

w0
; vol(J ′ ∩N) = q

m−1
2

a vw0
.

Proof. We follow the notation of Proposition 5.16. Apply both sides of equation
(5.21) to φ1,χ and use Lemma 5.10 to obtain

A(χ, σ,w0) ◦ φ1,χ = c(χ, σ)((cw0
(χ)− 1)φ1,χ + q−1

a ωπ(−1)vw0
φw0,χ).

Evaluating this equation at a “symmetric” w ∈ W and then evaluating the resulting
equation at w0, we get

vol(J ′)−1q−1
a ωπ(−1)vw0

c(χ, σ)ϕw = A(χ, σ,w0)(φ1,χ(w))(w0)

=

∫
N

f1,w,χ(w
−1
0 nw0)dn =

∫
J′∩N

f1,w,χ(n)dn

= vol(J ′)−1vol(J ′ ∩N)ϕw.

Substituting for c(χ, σ), we conclude from (5.23) that

vol(J ′ ∩N) = q−1
a v2w0

vol(J ′ ∩N).

Then Lemma 5.20 implies that

v2w0
vol(J ′ ∩N)2 = qm+1

a

and the desired conclusion follows from this. �

Lemma 5.20 and Lemma 5.21 together with our expression for the Plancherel
constant give another proof of the following well-known result of Shahidi [29, The-
orem 6.1]:

Theorem 5.22. For a pair (π1, π2) of irreducible unitary supercuspidal represen-
tations of GLn(F ) sharing the same endo-class as above, there exists a unique
measure dn⊗ dn defining the intertwining operators so that

μ(s, π1 × π2) = qf(π1×π̌2,ψ) L(s, π1 × π̌2)

L(1 + s, π1 × π̌2)

L(−s, π̌2 × π1)

L(1− s, π̌2 × π1)
.

Remark 6. In the course of the proof of Lemma 5.20, we proved (1.1) in the split
case. We are unable to deduce this equality in the non-split case directly through
local means. It likely involves a better understanding of the map Ξ in Proposi-
tion 5.17. In any case, with the volume factors in place, we may appeal to the
functional equation satisfied by the local coefficient [31] (and [14] in the case of
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positive characteristic) whose proof invokes a global-to-local argument, and show
fLS(π × π, ψ) = f(π × π̌, ψ). This in turn implies (1.1) in the non-split case. In
general, it is difficult to prove such equalities using purely local methods. We view
Shahidi’s work [29] as a miraculous calculation, but his methods do not seem to
generalize to other situations. In contrast, the approach here is more ‘formal’ and
can be adapted to other situations as pointed out in §1.
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