The Langlands-Shahidi method for pairs via types and covers
HTML articles powered by AMS MathViewer
- by Yeongseong Jo and M. Krishnamurthy
- Represent. Theory 26 (2022), 635-672
- DOI: https://doi.org/10.1090/ert/620
- Published electronically: June 28, 2022
- PDF | Request permission
Abstract:
We compute the local coefficient attached to a pair $(\pi _1,\pi _2)$ of supercuspidal (complex) representations of the general linear group using the theory of types and covers ร la Bushnell-Kutzko. In the process, we obtain another proof of a well-known formula of Shahidi for the corresponding Plancherel constant. The approach taken here can be adapted to other situations of arithmetic interest within the context of the Langlands-Shahidi method, particularly to that of a Siegel Levi subgroup inside a classical group.References
- Colin J. Bushnell and Guy Henniart, Supercuspidal representations of $\textrm {GL}_n$: explicit Whittaker functions, J. Algebra 209 (1998), no.ย 1, 270โ287. MR 1652130, DOI 10.1006/jabr.1998.7542
- Colin J. Bushnell and Guy Henniart, To an effective local Langlands correspondence, Mem. Amer. Math. Soc. 231 (2014), no.ย 1087, v+88. MR 3236840, DOI 10.1090/memo/1087
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Colin J. Bushnell, Guy M. Henniart, and Philip C. Kutzko, Local Rankin-Selberg convolutions for $\textrm {GL}_n$: explicit conductor formula, J. Amer. Math. Soc. 11 (1998), no.ย 3, 703โ730. MR 1606410, DOI 10.1090/S0894-0347-98-00270-7
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no.ย 3, 582โ634. MR 1643417, DOI 10.1112/S0024611598000574
- Colin J. Bushnell and Philip C. Kutzko, Semisimple types in $\textrm {GL}_n$, Compositio Math. 119 (1999), no.ย 1, 53โ97. MR 1711578, DOI 10.1023/A:1001773929735
- Daniel Bump and Solomon Friedberg, The exterior square automorphic $L$-functions on $\textrm {GL}(n)$, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp.ย 47โ65. MR 1159108
- Colin J. Bushnell and Philip C. Kutzko, Types in reductive $p$-adic groups: the Hecke algebra of a cover, Proc. Amer. Math. Soc. 129 (2001), no.ย 2, 601โ607. MR 1712937, DOI 10.1090/S0002-9939-00-05665-3
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no.ย 3, 387โ406. MR 571057
- W. Casselman and J. Shalika, The unramified principal series of $p$-adic groups. II. The Whittaker function, Compositio Math. 41 (1980), no.ย 2, 207โ231. MR 581582
- Kei Yuen Chan and Gordan Savin, Iwahori component of the Gelfand-Graev representation, Math. Z. 288 (2018), no.ย 1-2, 125โ133. MR 3774407, DOI 10.1007/s00209-017-1882-3
- Kei Yuen Chan and Gordan Savin, Bernstein-Zelevinsky derivatives: a Hecke algebra approach, Int. Math. Res. Not. IMRN 3 (2019), 731โ760. MR 3910471, DOI 10.1093/imrn/rnx138
- Guy Henniart and Luis Lomelรญ, Uniqueness of Rankin-Selberg products, J. Number Theory 133 (2013), no.ย 12, 4024โ4035. MR 3165629, DOI 10.1016/j.jnt.2013.05.015
- Roger Howe, Harish-Chandra homomorphisms for ${\mathfrak {p}}$-adic groups, CBMS Regional Conference Series in Mathematics, vol. 59, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. With the collaboration of Allen Moy. MR 821216, DOI 10.1090/cbms/059
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no.ย 2, 367โ464. MR 701565, DOI 10.2307/2374264
- Dihua Jiang, Chufeng Nien, and Shaun Stevens, Towards the Jacquet conjecture on the local converse problem for $p$-adic $\textrm {GL}_n$, J. Eur. Math. Soc. (JEMS) 17 (2015), no.ย 4, 991โ1007. MR 3349305, DOI 10.4171/JEMS/524
- Ju-Lee Kim, A generalized Casselman-Shalika formula on $GL_N$, Advances in the theory of automorphic forms and their $L$-functions, Contemp. Math., vol. 664, Amer. Math. Soc., Providence, RI, 2016, pp.ย 209โ223. MR 3502984, DOI 10.1090/conm/664/13110
- Ju-Lee Kim, An inductive formula for $\epsilon$-factors, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, pp.ย 243โ260. MR 3220930, DOI 10.1090/conm/614/12266
- M. Krishnamurthy and P. Kutzko, Computing local coefficients via types and covers: the example of $SL(2)$, Bull. Iranian Math. Soc. 43 (2017), no.ย 4, 221โ234. MR 3711829
- P. C. Kutzko, Mackeyโs theorem for nonunitary representations, Proc. Amer. Math. Soc. 64 (1977), no.ย 1, 173โ175. MR 442145, DOI 10.1090/S0002-9939-1977-0442145-3
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no.ย 3, 599โ635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- Amiya Kumar Mondal, On a conductor formula of Bushnell, Henniart and Kutzko, J. Ramanujan Math. Soc. 31 (2016), no.ย 4, 323โ337. MR 3590448
- Vytautas Paskunas and Shaun Stevens, On the realization of maximal simple types and epsilon factors of pairs, Amer. J. Math. 130 (2008), no.ย 5, 1211โ1261. MR 2450207, DOI 10.1353/ajm.0.0022
- Amritanshu Prasad, On Bernsteinโs presentation of Iwahori-Hecke algebras and representations of split reductive groups over non-Archimedean local fields, Bull. Kerala Math. Assoc. Special Issue (2005), 31โ51 (2007). MR 2250034
- Mark Reeder, Hecke algebras and harmonic analysis on $p$-adic groups, Amer. J. Math. 119 (1997), no.ย 1, 225โ249. MR 1428064, DOI 10.1353/ajm.1997.0005
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no.ย 2, 297โ355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, Local coefficients and normalization of intertwining operators for $\textrm {GL}(n)$, Compositio Math. 48 (1983), no.ย 3, 271โ295. MR 700741
- Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $\textrm {GL}(n)$, Amer. J. Math. 106 (1984), no.ย 1, 67โ111. MR 729755, DOI 10.2307/2374430
- Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. of Math. (2) 127 (1988), no.ย 3, 547โ584. MR 942520, DOI 10.2307/2007005
- Freydoon Shahidi, A proof of Langlandsโ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no.ย 2, 273โ330. MR 1070599, DOI 10.2307/1971524
- Geo Kam-Fai Tam, Explicit Whittaker data for essentially tame supercuspidal representations, Pacific J. Math. 301 (2019), no.ย 2, 617โ638. MR 4023361, DOI 10.2140/pjm.2019.301.617
- Rongqing Ye and Elad Zelingher, Epsilon factors of representations of finite general linear groups, J. Number Theory 221 (2021), 122โ142. MR 4203563, DOI 10.1016/j.jnt.2020.06.007
Bibliographic Information
- Yeongseong Jo
- Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
- Address at time of publication: Department of Mathematics Education, Ewha Womans University, Seoul 03760, Republic of Korea
- MR Author ID: 995001
- ORCID: 0000-0001-5546-8370
- Email: yeongseong.jo@maine.edu
- M. Krishnamurthy
- Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242
- MR Author ID: 720814
- ORCID: 0000-0002-5367-2017
- Email: muthu-krishnamurthy@uiowa.edu
- Received by editor(s): April 10, 2021
- Received by editor(s) in revised form: April 11, 2022
- Published electronically: June 28, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 635-672
- MSC (2020): Primary 22E50; Secondary 11F70
- DOI: https://doi.org/10.1090/ert/620
- MathSciNet review: 4445716