Calculus of archimedean Rankin–Selberg integrals with recurrence relations
HTML articles powered by AMS MathViewer
- by Taku Ishii and Tadashi Miyazaki
- Represent. Theory 26 (2022), 714-763
- DOI: https://doi.org/10.1090/ert/618
- Published electronically: July 6, 2022
- PDF | Request permission
Abstract:
Let $n$ and $n’$ be positive integers such that $n-n’\in \{0,1\}$. Let $F$ be either $\mathbb {R}$ or $\mathbb {C}$. Let $K_n$ and $K_{n’}$ be maximal compact subgroups of $\mathrm {GL}(n,F)$ and $\mathrm {GL}(n’,F)$, respectively. We give the explicit descriptions of archimedean Rankin–Selberg integrals at the minimal $K_n$- and $K_{n’}$-types for pairs of principal series representations of $\mathrm {GL}(n,F)$ and $\mathrm {GL}(n’,F)$, using their recurrence relations. Our results for $F=\mathbb {C}$ can be applied to the arithmetic study of critical values of automorphic $L$-functions.References
- S. J. Ališauskas, A.-A. A. Jucys, and A. P. Jucys, On the symmetric tensor operators of the unitary groups, J. Mathematical Phys. 13 (1972), 1329–1333. MR 314374, DOI 10.1063/1.1666142
- James W. Cogdell, Lectures on $L$-functions, converse theorems, and functoriality for $\textrm {GL}_n$, Lectures on automorphic $L$-functions, Fields Inst. Monogr., vol. 20, Amer. Math. Soc., Providence, RI, 2004, pp. 1–96. MR 2071506
- Chao-Ping Dong and Huajian Xue, On the nonvanishing hypothesis for Rankin-Selberg convolutions for $\textrm {GL}_n(\Bbb C)\times \textrm {GL}_n(\Bbb C)$, Represent. Theory 21 (2017), 151–171. MR 3687651, DOI 10.1090/ert/502
- I. M. Gel′fand and M. L. Cetlin, Finite-dimensional representations of the group of unimodular matrices, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825–828 (Russian). MR 0035774
- Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486, DOI 10.1007/978-0-387-79852-3
- Loïc Grenié, Critical values of automorphic $L$-functions for $\textrm {GL}(r)\times \textrm {GL}(r)$, Manuscripta Math. 110 (2003), no. 3, 283–311. MR 1969002, DOI 10.1007/s00229-002-0333-5
- Harald Grobner and Michael Harris, Whittaker periods, motivic periods, and special values of tensor product $L$-functions, J. Inst. Math. Jussieu 15 (2016), no. 4, 711–769. MR 3569075, DOI 10.1017/S1474748014000462
- Erich Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959 (German). Herausgegeben im Auftrage der Akademie der Wissenschaften zu Göttingen. MR 0104550
- Miki Hirano, Taku Ishii, and Tadashi Miyazaki, Archimedean zeta integrals for $GL(3) \times GL(2)$, Mem. Amer. Math. Soc. 278 (2022), no. 1366, viii+122. MR 4426708, DOI 10.1090/memo/1366
- Taku Ishii and Eric Stade, New formulas for Whittaker functions on $\textrm {GL}(n,\Bbb R)$, J. Funct. Anal. 244 (2007), no. 1, 289–314. MR 2294485, DOI 10.1016/j.jfa.2006.12.004
- Taku Ishii and Eric Stade, Archimedean zeta integrals on $\mathrm {GL}_n\times \mathrm {GL}_m$ and $\mathrm {SO}_{2n+1}\times \mathrm {GL}_m$, Manuscripta Math. 141 (2013), no. 3-4, 485–536. MR 3062596, DOI 10.1007/s00229-012-0581-y
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654, DOI 10.1007/BFb0058988
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Hervé Jacquet, Automorphic forms on $\textrm {GL}(2)$. Part II, Lecture Notes in Mathematics, Vol. 278, Springer-Verlag, Berlin-New York, 1972. MR 0562503, DOI 10.1007/BFb0058503
- Hervé Jacquet, Archimedean Rankin-Selberg integrals, Automorphic forms and $L$-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 57–172. MR 2533003, DOI 10.1090/conm/489/09547
- Hervé Jacquet and Joseph Shalika, Rankin-Selberg convolutions: Archimedean theory, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 125–207. MR 1159102
- A. A. Jucis, The isoscalar factors of the Clebsch-Gordan coefficients of unitary groups, Litovsk. Fiz. Sb. 10 (1970), 5–12 (Russian, with English and Lithuanian summaries). MR 285204
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001. An overview based on examples; Reprint of the 1986 original. MR 1880691
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- Tadashi Miyazaki, The local zeta integrals for $GL(2,\mathbf {C})\times GL(2,\mathbf {C})$, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 1, 1–6. MR 3743720, DOI 10.3792/pjaa.94.1
- Alexandru A. Popa, Whittaker newforms for Archimedean representations, J. Number Theory 128 (2008), no. 6, 1637–1645. MR 2419183, DOI 10.1016/j.jnt.2007.06.005
- A. Raghuram, Critical values of Rankin-Selberg $L$-functions for $\text {GL}_n\times \text {GL}_{n-1}$ and the symmetric cube $L$-functions for $\text {GL}_2$, Forum Math. 28 (2016), no. 3, 457–489. MR 3510825, DOI 10.1515/forum-2014-0043
- R. A. Rankin, Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions. I. The zeros of the function $\sum ^\infty _{n=1}\tau (n)/n^s$ on the line ${\mathfrak {R}}s=13/2$. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372. MR 411, DOI 10.1017/S0305004100021095
- Atle Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47–50 (German). MR 2626
- Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227–299. MR 590291, DOI 10.1007/BF02414191
- Eric Stade, Mellin transforms of $\textrm {GL}(n,\Bbb R)$ Whittaker functions, Amer. J. Math. 123 (2001), no. 1, 121–161. MR 1827280, DOI 10.1353/ajm.2001.0004
- Eric Stade, Archimedean $L$-factors on $\textrm {GL}(n)\times \textrm {GL}(n)$ and generalized Barnes integrals, Israel J. Math. 127 (2002), 201–219. MR 1900699, DOI 10.1007/BF02784531
- Binyong Sun, The nonvanishing hypothesis at infinity for Rankin-Selberg convolutions, J. Amer. Math. Soc. 30 (2017), no. 1, 1–25. MR 3556287, DOI 10.1090/jams/855
- N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions. Vol. 3, Mathematics and its Applications (Soviet Series), vol. 75, Kluwer Academic Publishers Group, Dordrecht, 1992. Classical and quantum groups and special functions; Translated from the Russian by V. A. Groza and A. A. Groza. MR 1206906, DOI 10.1007/978-94-017-2881-2
- Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR 1170566
- N. R. Wallach, $C^\infty$ vectors, Representations of Lie groups and quantum groups (Trento, 1993) Pitman Res. Notes Math. Ser., vol. 311, Longman Sci. Tech., Harlow, 1994, pp. 205–270. MR 1431308
- Takao Watanabe, Global theta liftings of general linear groups, J. Math. Sci. Univ. Tokyo 3 (1996), no. 3, 699–711. MR 1432113
- Shou-Wu Zhang, Gross-Zagier formula for $\textrm {GL}_2$, Asian J. Math. 5 (2001), no. 2, 183–290. MR 1868935, DOI 10.4310/AJM.2001.v5.n2.a1
- D. P. Zhelobenko, On Gel′fand-Zetlin bases for classical Lie algebras, Representations of Lie groups and Lie algebras (Budapest, 1971) Akad. Kiadó, Budapest, 1985, pp. 79–106. MR 829046
Bibliographic Information
- Taku Ishii
- Affiliation: Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
- MR Author ID: 695361
- Email: ishii@st.seikei.ac.jp
- Tadashi Miyazaki
- Affiliation: Department of Mathematics, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa 252-0373, Japan
- MR Author ID: 854974
- ORCID: 0000-0002-0918-8068
- Email: miyaza@kitasato-u.ac.jp
- Received by editor(s): December 23, 2021
- Received by editor(s) in revised form: April 8, 2022, and April 19, 2022
- Published electronically: July 6, 2022
- Additional Notes: This work was supported by JSPS KAKENHI Grant Numbers JP19K03452, JP18K03252
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 714-763
- MSC (2020): Primary 11F70; Secondary 11F30
- DOI: https://doi.org/10.1090/ert/618
- MathSciNet review: 4448934