Root components for tensor product of affine Kac-Moody Lie algebra modules
HTML articles powered by AMS MathViewer
- by Samuel Jeralds and Shrawan Kumar
- Represent. Theory 26 (2022), 825-858
- DOI: https://doi.org/10.1090/ert/617
- Published electronically: July 26, 2022
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be an affine Kac-Moody Lie algebra and let $\lambda , \mu$ be two dominant integral weights for $\mathfrak {g}$. We prove that under some mild restriction, for any positive root $\beta$, $V(\lambda )\otimes V(\mu )$ contains $V(\lambda +\mu -\beta )$ as a component, where $V(\lambda )$ denotes the integrable highest weight (irreducible) $\mathfrak {g}$-module with highest weight $\lambda$. This extends the corresponding result by Kumar from the case of finite dimensional semisimple Lie algebras to the affine Kac-Moody Lie algebras. One crucial ingredient in the proof is the action of Virasoro algebra via the Goddard-Kent-Olive construction on the tensor product $V(\lambda )\otimes V(\mu )$. Then, we prove the corresponding geometric results including the higher cohomology vanishing on the $\mathcal {G}$-Schubert varieties in the product partial flag variety $\mathcal {G}/\mathcal {P}\times \mathcal {G}/\mathcal {P}$ with coefficients in certain sheaves coming from the ideal sheaves of $\mathcal {G}$-sub-Schubert varieties. This allows us to prove the surjectivity of the Gaussian map.References
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- Merrick Brown and Shrawan Kumar, A study of saturated tensor cone for symmetrizable Kac-Moody algebras, Math. Ann. 360 (2014), no. 3-4, 901–936. MR 3273648, DOI 10.1007/s00208-014-1040-8
- Robin Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99. MR 432647
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Victor G. Kac, Ashok K. Raina, and Natasha Rozhkovskaya, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, 2nd ed., Advanced Series in Mathematical Physics, vol. 29, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. MR 3185361, DOI 10.1142/8882
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485. MR 1203234, DOI 10.1215/S0012-7094-93-06920-7
- Bertram Kostant, A formula for the multiplicity of a weight, Trans. Amer. Math. Soc. 93 (1959), 53–73. MR 109192, DOI 10.1090/S0002-9947-1959-0109192-6
- Shrawan Kumar, Proof of Wahl’s conjecture on surjectivity of the Gaussian map for flag varieties, Amer. J. Math. 114 (1992), no. 6, 1201–1220. MR 1198300, DOI 10.2307/2374759
- Shrawan Kumar, Existence of certain components in the tensor product of two integrable highest weight modules for Kac-Moody algebras, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 25–38. MR 1026944
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- Shrawan Kumar, Tensor product decomposition, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1226–1261. MR 2827839
- Olivier Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159-160 (1988), 267 (French, with English summary). MR 980506
- Olivier Mathieu, Construction d’un groupe de Kac-Moody et applications, Compositio Math. 69 (1989), no. 1, 37–60 (French). MR 986812
- Jonathan Wahl, Gaussian maps and tensor products of irreducible representations, Manuscripta Math. 73 (1991), no. 3, 229–259. MR 1132139, DOI 10.1007/BF02567640
Bibliographic Information
- Samuel Jeralds
- Affiliation: School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
- ORCID: 0000-0003-3109-7733
- Email: s.jeralds@uq.edu.au
- Shrawan Kumar
- Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250
- MR Author ID: 219351
- Email: shrawan@email.unc.edu
- Received by editor(s): July 14, 2021
- Received by editor(s) in revised form: April 21, 2022
- Published electronically: July 26, 2022
- Additional Notes: The second author was partially supported by the NSF grant number DMS-1802328.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 825-858
- MSC (2020): Primary 14M15, 14M17, 20G44, 22E47
- DOI: https://doi.org/10.1090/ert/617
- MathSciNet review: 4457456