Knizhnik–Zamolodchikov functor for degenerate double affine Hecke algebras: algebraic theory
HTML articles powered by AMS MathViewer
Abstract:
In this article, we define an algebraic version of the Knizhnik–Zamolodchikov (KZ) functor for the degenerate double affine Hecke algebras (a.k.a. trigonometric Cherednik algebras). We compare it with the KZ monodromy functor constructed by Varagnolo–Vasserot. We prove the double centraliser property for our functor and give a characterisation of its kernel. We establish these results for a family of algebras, called quiver double Hecke algebras, which includes the degenerate double affine Hecke algebras as special cases.References
- Gwyn Bellamy and Victor Ginzburg, Hamiltonian reduction and nearby cycles for mirabolic $\scr {D}$-modules, Adv. Math. 269 (2015), 71–161. MR 3281133, DOI 10.1016/j.aim.2014.10.002
- N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9, Springer, Berlin, 2006 (French). Reprint of the 1983 original. MR 2284892
- Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal N=4$ gauge theories, II, Adv. Theor. Math. Phys. 22 (2018), no. 5, 1071–1147. MR 3952347, DOI 10.4310/ATMP.2018.v22.n5.a1
- K. A. Brown, I. G. Gordon, and C. H. Stroppel, Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions, J. Algebra 319 (2008), no. 3, 1007–1034. MR 2379091, DOI 10.1016/j.jalgebra.2007.10.026
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Jonathan Brundan, Alexander Kleshchev, and Peter J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353–1404. MR 3205728, DOI 10.1215/00127094-2681278
- Ivan Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald’s operators, Internat. Math. Res. Notices 9 (1992), 171–180. MR 1185831, DOI 10.1155/S1073792892000199
- Ivan Cherednik, Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Adv. Math. 106 (1994), no. 1, 65–95. MR 1275866, DOI 10.1006/aima.1994.1049
- Ivan Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216. MR 1314036, DOI 10.2307/2118632
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174, DOI 10.1007/BFb0061194
- Yu. A. Drozd, V. M. Futorny, and S. A. Ovsienko, Harish-Chandra subalgebras and Gel′fand-Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 79–93. MR 1308982, DOI 10.1007/978-94-017-1556-0_{5}
- C. F. Dunkl and E. M. Opdam, Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), no. 1, 70–108. MR 1971464, DOI 10.1112/S0024611502013825
- Pavel Etingof and Xiaoguang Ma, Lecture notes on Cherednik algebras, 2010.
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category $\scr O$ for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651. MR 2018786, DOI 10.1007/s00222-003-0313-8
- G. J. Heckman, Hecke algebras and hypergeometric functions, Invent. Math. 100 (1990), no. 2, 403–417. MR 1047141, DOI 10.1007/BF01231193
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR 2182076, DOI 10.1007/3-540-27950-4
- Syu Kato, Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 3, 619–663. MR 3165425, DOI 10.1215/00127094-2405388
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Alexander S. Kleshchev, Affine highest weight categories and affine quasihereditary algebras, Proc. Lond. Math. Soc. (3) 110 (2015), no. 4, 841–882. MR 3335289, DOI 10.1112/plms/pdv004
- Elise LePage and Ben Webster, Rational Cherednik algebras of $G(\ell ,p,n)$ from the Coulomb perspective, arXiv:1912.0046 [Math.RA], 2020.
- Wille Liu, Extension algebras on $\mathbf {Z}/m$-graded Lie algebras, arXiv:1911.11587[Math.RT], 2019.
- George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR 991016, DOI 10.1090/S0894-0347-1989-0991016-9
- George Lusztig and Zhiwei Yun, $\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, I, Represent. Theory 21 (2017), 277–321. MR 3697026, DOI 10.1090/ert/500
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003. MR 1976581, DOI 10.1017/CBO9780511542824
- Eric M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, MSJ Memoirs, vol. 8, Mathematical Society of Japan, Tokyo, 2000. With a preface by Toshio Oshima. MR 1805058
- Raphaël Rouquier, 2-Kac-Moody algebras, Eprint, arXiv:0812.5023, December 2008.
- Raphaël Rouquier, $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR 2422270, DOI 10.17323/1609-4514-2008-8-1-119-158
- Raphaël Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359–410. MR 2908731, DOI 10.1142/S1005386712000247
- Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431
- M. Varagnolo and E. Vasserot, From double affine Hecke algebras to quantized affine Schur algebras, Int. Math. Res. Not. 26 (2004), 1299–1333. MR 2046511, DOI 10.1155/S1073792804132704
- M. Varagnolo and E. Vasserot, Finite-dimensional representations of DAHA and affine Springer fibers: the spherical case, Duke Math. J. 147 (2009), no. 3, 439–540. MR 2510742, DOI 10.1215/00127094-2009-016
- Eric Vasserot, Induced and simple modules of double affine Hecke algebras, Duke Math. J. 126 (2005), no. 2, 251–323. MR 2115259, DOI 10.1215/S0012-7094-04-12623-5
- Ben Webster, Koszul duality between Higgs and Coulomb categories $\mathcal {O}$, arXiv:1611.06541[Math.RT], 2019.
- Ben Webster, Representation theory of the cyclotomic Cherednik algebra via the Dunkl-Opdam subalgebra, New York J. Math. 25 (2019), 1017–1047. MR 4017214
Bibliographic Information
- Wille Liu
- Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- Email: wille@mpim-bonn.mpg.de
- Received by editor(s): November 21, 2020
- Received by editor(s) in revised form: January 28, 2022, and April 19, 2022
- Published electronically: August 30, 2022
- © Copyright 2022 by Wille Liu
- Journal: Represent. Theory 26 (2022), 906-961
- MSC (2020): Primary 20C08
- DOI: https://doi.org/10.1090/ert/614
- MathSciNet review: 4474882