Solid locally analytic representations of $p$-adic Lie groups
HTML articles powered by AMS MathViewer
- by Joaquín Rodrigues Jacinto and Juan Esteban Rodríguez Camargo
- Represent. Theory 26 (2022), 962-1024
- DOI: https://doi.org/10.1090/ert/615
- Published electronically: August 31, 2022
- PDF | Request permission
Abstract:
We develop the theory of locally analytic representations of compact $p$-adic Lie groups from the perspective of the theory of condensed mathematics of Clausen and Scholze. As an application, we generalise Lazard’s isomorphisms between continuous, locally analytic and Lie algebra cohomology to solid representations. We also prove a comparison result between the group cohomology of a solid representation and of its analytic vectors.References
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- Grigory Andreychev, Pseudocoherent and perfect complexes and vector bundles on analytic adic spaces, arXiv:2105.12591, 2021.
- Philippe Blanc, Sur la cohomologie continue des groupes localement compacts, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 137–168 (French). MR 543215, DOI 10.24033/asens.1364
- Guido Bosco, On the $p$-adic pro-étale cohomology of Drinfeld symmetric spaces, arXiv:2110.10683, 2021.
- Dustin Clausen and Peter Scholze, Condensed mathematics, In preparation.
- Dustin Clausen and Peter Scholze, Lectures on condensed mathematics, https://www.math.uni-bonn.de/people/scholze/Condensed.pdf, 2019.
- Dustin Clausen and Peter Scholze, Lectures on analytic geometry, https://www.math.uni-bonn.de/people/scholze/Analytic.pdf, 2020.
- Pierre Colmez, Représentations de $\textrm {GL}_2(\mathbf Q_p)$ et $(\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281–509 (French, with English and French summaries). MR 2642409
- Pierre Colmez, Gabriel Dospinescu, and Vytautas Paškūnas, The $p$-adic local Langlands correspondence for $\textrm {GL}_2(\Bbb Q_p)$, Camb. J. Math. 2 (2014), no. 1, 1–47. MR 3272011, DOI 10.4310/CJM.2014.v2.n1.a1
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Matthew Emerton, Locally analytic vectors in representations of locally $p$-adic analytic groups, Mem. Amer. Math. Soc. 248 (2017), no. 1175, iv+158. MR 3685952, DOI 10.1090/memo/1175
- Annette Huber, Guido Kings, and Niko Naumann, Some complements to the Lazard isomorphism, Compos. Math. 147 (2011), no. 1, 235–262. MR 2771131, DOI 10.1112/S0010437X10004884
- Jan Kohlhaase, The cohomology of locally analytic representations, J. Reine Angew. Math. 651 (2011), 187–240. MR 2774315, DOI 10.1515/CRELLE.2011.013
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
- Sabine Lechner, A comparison of locally analytic group cohomology and Lie algebra cohomology for $p$-adic Lie groups, https://arxiv.org/abs/1201.4550, 2012.
- G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20–48. MR 125179, DOI 10.2307/1970281
- Lue Pan, On locally analytic vectors of the completed cohomology of modular curves, Forum Math. Pi 10 (2022), Paper No. e7, 82. MR 4390302, DOI 10.1017/fmp.2022.1
- Tobias Schmidt, Analytic vectors in continuous $p$-adic representations, Compos. Math. 145 (2009), no. 1, 247–270. MR 2480502, DOI 10.1112/S0010437X08003825
- Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547, DOI 10.1007/978-3-662-04728-6
- P. Schneider, J. Teitelbaum, and Dipendra Prasad, $U({\mathfrak {g}})$-finite locally analytic representations, Represent. Theory 5 (2001), 111–128. With an appendix by Dipendra Prasad. MR 1835001, DOI 10.1090/S1088-4165-01-00109-1
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $p$-adic representation theory, with applications to $\textrm {GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443–468. MR 1887640, DOI 10.1090/S0894-0347-01-00377-0
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
- Peter Schneider and Jeremy Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297–326. MR 2133762, DOI 10.1090/S1088-4165-05-00277-3
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577, DOI 10.1007/BFb0108758
- Marianne Freundlich Smith, The Pontrjagin duality theorem in linear spaces, Ann. of Math. (2) 56 (1952), 248–253. MR 49479, DOI 10.2307/1969798
- Georg Tamme, On an analytic version of Lazard’s isomorphism, Algebra Number Theory 9 (2015), no. 4, 937–956. MR 3352825, DOI 10.2140/ant.2015.9.937
Bibliographic Information
- Joaquín Rodrigues Jacinto
- Affiliation: Bâtiment 307, rue Michel Magat, Faculté des Sciences d’Orsay, Université Paris-Saclay, France
- Email: joaquin.rodrigues-jacinto@universite-paris-saclay.fr
- Juan Esteban Rodríguez Camargo
- Affiliation: Unité de Mathématiques Pures et Appliquées Unité mixte de recherche 5669 Centre national de la recherche scientifique, École Normale Supérieure de Lyon 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Email: juan-esteban.rodriguez-camargo@ens-lyon.fr
- Received by editor(s): January 20, 2022
- Received by editor(s) in revised form: April 9, 2022, April 12, 2022, and April 13, 2022
- Published electronically: August 31, 2022
- Additional Notes: The first named author was supported by the ERC-2018-COG-818856-HiCoShiVa.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 962-1024
- MSC (2020): Primary 11F85, 22E50, 22E41
- DOI: https://doi.org/10.1090/ert/615
- MathSciNet review: 4475468