Total Positivity in Symmetric Spaces
HTML articles powered by AMS MathViewer
- by G. Lusztig
- Represent. Theory 26 (2022), 1025-1046
- DOI: https://doi.org/10.1090/ert/628
- Published electronically: October 4, 2022
- PDF | Request permission
Abstract:
In this paper we extend the theory of total positivity for reductive groups to the case of symmetric spaces.References
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602, DOI 10.1007/978-3-662-00756-3
- Mikael Hansson and Axel Hultman, A word property for twisted involutions in Coxeter groups, J. Combin. Theory Ser. A 161 (2019), 220–235. MR 3861777, DOI 10.1016/j.jcta.2018.07.006
- Jun Hu and Jing Zhang, On involutions in symmetric groups and a conjecture of Lusztig, Adv. Math. 287 (2016), 1–30. MR 3422674, DOI 10.1016/j.aim.2015.10.003
- Jun Hu and Jing Zhang, On involutions in Weyl groups, J. Lie Theory 27 (2017), no. 3, 671–706. MR 3592481
- Jun Hu, Jing Zhang, and Yabo Wu, Involutions in Weyl group of type $F_4$, Front. Math. China 12 (2017), no. 4, 891–906. MR 3663749, DOI 10.1007/s11464-017-0646-z
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 4, 403–459. MR 4054343, DOI 10.21915/bimas.2019402
- George Lusztig and David A. Vogan Jr., Hecke algebras and involutions in Weyl groups, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 323–354. MR 3051317
- G. Lusztig and D. Vogan, Involutions in Weyl groups and nil-Hecke algebras, arXiv:2107.10754, 2012.
- E. Marberg, Braid relations for involution words in affine Coxeter groups, arXiv:1703.10437, 2017.
- R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), no. 1-3, 389–436. MR 1066573, DOI 10.1007/BF00147354
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 117100
- Received by editor(s): January 23, 2022
- Received by editor(s) in revised form: May 30, 2022, and August 4, 2022
- Published electronically: October 4, 2022
- Additional Notes: This work was supported by NSF grant DMS-1855773 and by a Simons Fellowship
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 1025-1046
- MSC (2020): Primary 20G05, 20G99
- DOI: https://doi.org/10.1090/ert/628
- MathSciNet review: 4492159