Weak cuspidality and the Howe correspondence
HTML articles powered by AMS MathViewer
- by Jesua Epequin
- Represent. Theory 26 (2022), 1080-1096
- DOI: https://doi.org/10.1090/ert/625
- Published electronically: October 14, 2022
- PDF | Request permission
Abstract:
We study the effect of the Howe correspondence on Harish-Chandra series for type I dual pairs over finite fields with odd characteristic. We define a bijection obtained from this correspondence, and enjoying the property of “having minimal unipotent support”. Finally, we examine the interaction between the Howe correspondence and weak cuspidality.References
- Jeffrey Adams and Allen Moy, Unipotent representations and reductive dual pairs over finite fields, Trans. Amer. Math. Soc. 340 (1993), no. 1, 309–321. MR 1173855, DOI 10.1090/S0002-9947-1993-1173855-4
- A.-M. Aubert, W. Kraśkiewicz, and T. Przebinda, Howe correspondence and Springer correspondence for dual pairs over a finite field, Lie algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., vol. 92, Amer. Math. Soc., Providence, RI, 2016, pp. 17–44. MR 3644225, DOI 10.1090/pspum/092/01580
- Anne-Marie Aubert, Jean Michel, and Raphaël Rouquier, Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J. 83 (1996), no. 2, 353–397 (French). MR 1390651, DOI 10.1215/S0012-7094-96-08312-X
- O. Dudas, M. Varagnolo, and E. Vasserot, Categorical actions on unipotent representations of finite unitary groups, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 129–197. MR 3949029, DOI 10.1007/s10240-019-00104-x
- Jesua Epequin Chavez, Extremal unipotent representations for the finite Howe correspondence, J. Algebra 535 (2019), 480–502. MR 3980856, DOI 10.1016/j.jalgebra.2019.05.046
- J. Epequin, On the Howe correspondence and Harish-Chandra series, arXiv:1910.13109, 2019.
- Paul Fong and Bhama Srinivasan, Brauer trees in classical groups, J. Algebra 131 (1990), no. 1, 179–225. MR 1055005, DOI 10.1016/0021-8693(90)90172-K
- Meinolf Geck, On the decomposition numbers of the finite unitary groups in nondefining characteristic, Math. Z. 207 (1991), no. 1, 83–89. MR 1106814, DOI 10.1007/BF02571376
- Meinolf Geck, A note on Harish-Chandra induction, Manuscripta Math. 80 (1993), no. 4, 393–401. MR 1243154, DOI 10.1007/BF03026560
- Meinolf Geck and Gunter Malle, On the existence of a unipotent support for the irreducible characters of a finite group of Lie type, Trans. Amer. Math. Soc. 352 (2000), no. 1, 429–456. MR 1475683, DOI 10.1090/S0002-9947-99-02210-2
- Paul Gérardin, Weil representations associated to finite fields, J. Algebra 46 (1977), no. 1, 54–101. MR 460477, DOI 10.1016/0021-8693(77)90394-5
- Thomas Gerber, Gerhard Hiss, and Nicolas Jacon, Harish-Chandra series in finite unitary groups and crystal graphs, Int. Math. Res. Not. IMRN 22 (2015), 12206–12250. MR 3456719, DOI 10.1093/imrn/rnv058
- Shamgar Gurevich and Roger Howe, Small representations of finite classical groups, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 209–234. MR 3753913, DOI 10.1007/978-3-319-59728-7_{8}
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- R. B. Howlett and G. I. Lehrer, Induced cuspidal representations and generalised Hecke rings, Invent. Math. 58 (1980), no. 1, 37–64. MR 570873, DOI 10.1007/BF01402273
- Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229–255. MR 818351, DOI 10.1007/BF01388961
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI 10.1007/BF01390002
- G. Lusztig, On the representations of reductive groups with disconnected centre, Astérisque 168 (1988), 10, 157–166. Orbites unipotentes et représentations, I. MR 1021495
- George Lusztig, A unipotent support for irreducible representations, Adv. Math. 94 (1992), no. 2, 139–179. MR 1174392, DOI 10.1016/0001-8708(92)90035-J
- S.-Y. Pan, Howe correspondence of unipotent characters for a finite symplectic/even-orthogonal dual pair, arXiv:1901.00623, 2019.
- S.-Y. Pan, Lusztig correspondence and Howe correspondence for finite reductive dual pairs, arXiv:1906.01158, 2019.
- S.-Y Pan, On theta and eta correspondences for finite symplectic/orthogonal dual pairs, arXiv:2006.06241, 2020.
- Shu-Yen Pan, On theta ranks of irreducible characters of a finite classical group, preprint 2021, DOI 10.48550/ARXIV.2102.09220, arXiv:abs/2102.09220.
- S. Rallis, On the Howe duality conjecture, Compositio Math. 51 (1984), no. 3, 333–399. MR 743016
- Nicolas Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR 672610, DOI 10.1007/BFb0096302
- Jay Taylor, On unipotent supports of reductive groups with a disconnected centre, J. Algebra 391 (2013), 41–61. MR 3081621, DOI 10.1016/j.jalgebra.2013.06.004
Bibliographic Information
- Jesua Epequin
- Affiliation: Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing 100190, People’s Republic of China
- MR Author ID: 1331438
- Received by editor(s): December 5, 2020
- Received by editor(s) in revised form: September 26, 2021, and June 5, 2022
- Published electronically: October 14, 2022
- Additional Notes: The author was supported by the Academy of Mathematics and Systems Science (AMSS) of the Chinese Academy of Science (CAS), and Concytec-Fondecyt-Perú (subvención Nro. 220 - 2014 - Fondecyt) during the preparation of this work.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 1080-1096
- MSC (2020): Primary 20C33
- DOI: https://doi.org/10.1090/ert/625
- MathSciNet review: 4496972