Character sheaves for classical symmetric pairs
HTML articles powered by AMS MathViewer
- by Kari Vilonen and Ting Xue; with Appendix B by Dennis Stanton
- Represent. Theory 26 (2022), 1097-1144
- DOI: https://doi.org/10.1090/ert/622
- Published electronically: October 17, 2022
- PDF | Request permission
Abstract:
We establish a Springer theory for classical symmetric pairs. We give an explicit description of character sheaves in this setting. In particular we determine the cuspidal character sheaves.References
- Susumu Ariki and Andrew Mathas, The number of simple modules of the Hecke algebras of type $G(r,1,n)$, Math. Z. 233 (2000), no. 3, 601–623. MR 1750939, DOI 10.1007/s002090050489
- B. Baumeister and G. Thomas, Simple dual braids, noncrossing partitions and Mikado braids of type $D_n$, Bull. Lond. Math. Soc. 49 (2017), no. 6, 1048–1065.
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- L. Barchini and R. Zierau, Components of Springer fibers associated to closed orbits for the symmetric pairs $(Sp(2n),GL(n))$ and $(O(n),O(p)\times O(q))$ I, J. Algebra 345 (2011), 109–136. MR 2842057, DOI 10.1016/j.jalgebra.2011.08.001
- Tsao-Hsien Chen, Kari Vilonen, and Ting Xue, Springer correspondence for the split symmetric pair in type $A$, Compos. Math. 154 (2018), no. 11, 2403–2425. MR 3867304, DOI 10.1112/s0010437x18007443
- Dan Ciubotaru, Kyo Nishiyama, and Peter E. Trapa, Regular orbits of symmetric subgroups on partial flag varieties, Representation theory, complex analysis, and integral geometry, Birkhäuser/Springer, New York, 2012, pp. 61–86. MR 2885068, DOI 10.1007/978-0-8176-4817-6_{4}
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Richard Dipper and Gordon James, Representations of Hecke algebras of type $B_n$, J. Algebra 146 (1992), no. 2, 454–481. MR 1152915, DOI 10.1016/0021-8693(92)90078-Z
- Meinolf Geck, On the representation theory of Iwahori-Hecke algebras of extended finite Weyl groups, Represent. Theory 4 (2000), 370–397. MR 1780716, DOI 10.1090/S1088-4165-00-00093-5
- Mikhail Grinberg, On the specialization to the asymptotic cone, J. Algebraic Geom. 10 (2001), no. 1, 1–17. MR 1795547
- Mikhail Grinberg, A generalization of Springer theory using nearby cycles, Represent. Theory 2 (1998), 410–431. MR 1657203, DOI 10.1090/S1088-4165-98-00053-3
- Mikhail Grinberg, Morse groups in symmetric spaces corresponding to the symmetric group, Selecta Math. (N.S.) 5 (1999), no. 3, 303–323. MR 1723810, DOI 10.1007/s000290050050
- M. Grinberg, K. Vilonen and T. Xue, Nearby cycle sheaves for symmetric pairs, arXiv:1805.02794. To appear in Amer. J. Math.
- M. Grinberg, K. Vilonen and T. Xue, Nearby cycle sheaves for stable polar representations. arXiv:2012.14522.
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- Anthony Henderson, Fourier transform, parabolic induction, and nilpotent orbits, Transform. Groups 6 (2001), no. 4, 353–370. MR 1870052, DOI 10.1007/BF01237252
- Anthony W. Knapp, Lie groups beyond an introduction, 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Study of antiorbital complexes, Representation theory and mathematical physics, Contemp. Math., vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 259–287. MR 2848930, DOI 10.1090/conm/557/11036
- G. Lusztig, From groups to symmetric spaces, Representation theory and mathematical physics, Contemp. Math., vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 245–258. MR 2848929, DOI 10.1090/conm/557/11035
- George Lusztig and Zhiwei Yun, $\mathbf {Z}/m$-graded Lie algebras and perverse sheaves, I, Represent. Theory 21 (2017), 277–321. MR 3697026, DOI 10.1090/ert/500
- Alexei Oblomkov and Zhiwei Yun, Geometric representations of graded and rational Cherednik algebras, Adv. Math. 292 (2016), 601–706. MR 3464031, DOI 10.1016/j.aim.2016.01.015
- Vladimir L. Popov, Self-dual algebraic varieties and nilpotent orbits, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 509–533. MR 1940680
- Mark Reeder and Jiu-Kang Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), no. 2, 437–477. MR 3164986, DOI 10.1090/S0894-0347-2013-00780-8
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Peter E. Trapa, Richardson orbits for real classical groups, J. Algebra 286 (2005), no. 2, 361–385. MR 2128022, DOI 10.1016/j.jalgebra.2003.07.027
- Peter E. Trapa, Leading-term cycles of Harish-Chandra modules and partial orders on components of the Springer fiber, Compos. Math. 143 (2007), no. 2, 515–540. MR 2309996, DOI 10.1112/S0010437X06002545
- K. Vilonen and T. Xue, Character sheaves for symmetric pairs: special linear groups. arXiv:2110.13451.
- K. Vilonen and T. Xue, Character sheaves for graded Lie algebras: stable gradings. arXiv:2012.08111.
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J. 49 (1982), no. 4, 943–1073. MR 683010
- T. Xue, Character sheaves for symmetric pairs: spin groups. arXiv:2111.00403. To appear in Pure Appl. Math. Q.
Bibliographic Information
- Kari Vilonen
- Affiliation: School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia; and Department of Mathematics and Statistics, University of Helsinki, Helsinki, 00014, Finland
- MR Author ID: 178620
- ORCID: 0000-0003-4231-2910
- Email: kari.vilonen@unimelb.edu.au
- Ting Xue
- Affiliation: School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia; and Department of Mathematics and Statistics, University of Helsinki, Helsinki, 00014, Finland
- MR Author ID: 779365
- ORCID: 0000-0002-9107-9361
- Email: ting.xue@unimelb.edu.au
- Dennis Stanton
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, MN 554455
- MR Author ID: 166315
- Email: stant001@umn.edu
- Received by editor(s): December 31, 2021
- Received by editor(s) in revised form: May 12, 2022, May 14, 2022, and June 9, 2022
- Published electronically: October 17, 2022
- Additional Notes: The first author was supported in part by the ARC grants DP150103525 and DP180101445 and the Academy of Finland. The second author was supported in part by the ARC grants DP150103525 and DE160100975.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 1097-1144
- MSC (2020): Primary 20G20, 14L35, 17B08
- DOI: https://doi.org/10.1090/ert/622
- MathSciNet review: 4497390