Towards combinatorial invariance for Kazhdan-Lusztig polynomials
HTML articles powered by AMS MathViewer
- by Charles Blundell, Lars Buesing, Alex Davies, Petar Veličković and Geordie Williamson
- Represent. Theory 26 (2022), 1145-1191
- DOI: https://doi.org/10.1090/ert/624
- Published electronically: November 16, 2022
- PDF | Request permission
Abstract:
Kazhdan-Lusztig polynomials are important and mysterious objects in representation theory. Here we present a new formula for their computation for symmetric groups based on the Bruhat graph. Our approach suggests a solution to the combinatorial invariance conjecture for symmetric groups, a well-known conjecture formulated by Lusztig and Dyer in the 1980s.References
- Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266
- Francesco Brenti, Fabrizio Caselli, and Mario Marietti, Special matchings and Kazhdan-Lusztig polynomials, Adv. Math. 202 (2006), no. 2, 555–601. MR 2222360, DOI 10.1016/j.aim.2005.01.011
- Sara C. Billey, Pattern avoidance and rational smoothness of Schubert varieties, Adv. Math. 139 (1998), no. 1, 141–156. MR 1652522, DOI 10.1006/aima.1998.1744
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- G. Burrull, N. Libedinsky, and D. Plaza, Combinatorial invariance conjecture for $\widetilde {A}_2$, arXiv:2105.04609, 2021.
- Tom Braden and Robert MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), no. 3, 533–551. MR 1871967, DOI 10.1007/s002080100232
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI 10.1007/s00031-003-0606-4
- Francesco Brenti, Kazhdan-Lusztig polynomials: history problems, and combinatorial invariance, Sém. Lothar. Combin. 49 (2002/04), Art. B49b, 30. MR 2006565
- Francesco Brenti, The intersection cohomology of Schubert varieties is a combinatorial invariant, European J. Combin. 25 (2004), no. 8, 1151–1167. MR 2095476, DOI 10.1016/j.ejc.2003.10.011
- Michel Brion, Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 1–37. Notes by Alvaro Rittatore. MR 1649623
- James B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 53–61. MR 1278700, DOI 10.1090/pspum/056.1/1278700
- A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhasz, M. Lackenby, G. Williamson, D. Hassabis, and P. Kohli, Advancing mathematics by guiding human intuition with AI, Nature 600 (2021), no. 7887, 70–74
- M. Dyer, Hecke algebras and reflections in Coxeter groups, Ph.D. Thesis, University of Sydney, 1987.
- M. J. Dyer, The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math. 111 (1993), no. 3, 571–574. MR 1202136, DOI 10.1007/BF01231299
- Ben Elias, Shotaro Makisumi, Ulrich Thiel, and Geordie Williamson, Introduction to Soergel bimodules, RSME Springer Series, vol. 5, Springer, Cham, [2020] ©2020. MR 4220642, DOI 10.1007/978-3-030-48826-0
- William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420. MR 1154177, DOI 10.1215/S0012-7094-92-06516-1
- Peter Fiebig and Geordie Williamson, Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 489–536 (English, with English and French summaries). MR 3330913, DOI 10.5802/aif.2856
- I. M. Gel′fand and V. V. Serganova, Combinatorial geometries and the strata of a torus on homogeneous compact manifolds, Uspekhi Mat. Nauk 42 (1987), no. 2(254), 107–134, 287 (Russian). MR 898623
- Joel Gibson, LieVis: Interactive visualisations in Lie theory, in preparation (2022), software available at https://www.jgibson.id.au/lievis/.
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Federico Incitti, On the combinatorial invariance of Kazhdan-Lusztig polynomials, J. Combin. Theory Ser. A 113 (2006), no. 7, 1332–1350. MR 2259064, DOI 10.1016/j.jcta.2005.12.003
- Ronald S. Irving, The socle filtration of a Verma module, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 1, 47–65. MR 944101, DOI 10.24033/asens.1550
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- V. Lakshmibai and C. S. Seshadri, Singular locus of a Schubert variety, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 2, 363–366. MR 752799, DOI 10.1090/S0273-0979-1984-15309-6
- Leonardo Patimo, A combinatorial formula for the coefficient of $q$ in Kazhdan-Lusztig polynomials, Int. Math. Res. Not. IMRN 5 (2021), 3203–3223. MR 4227568, DOI 10.1093/imrn/rnz255
- Morihiko Saito, Introduction to mixed Hodge modules, Astérisque 179-180 (1989), 10, 145–162. Actes du Colloque de Théorie de Hodge (Luminy, 1987). MR 1042805
- Christian Schnell, An overview of Morihiko Saito’s theory of mixed Hodge modules, Representation theory, automorphic forms & complex geometry, Int. Press, Somerville, MA, [2019] ©2019, pp. 27–80. MR 4337393
- W. Soergel, $\mathfrak {n}$-cohomology of simple highest weight modules on walls and purity, Invent. Math. 98 (1989), no. 3, 565–580. MR 1022307, DOI 10.1007/BF01393837
- Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory 1 (1997), 83–114. MR 1444322, DOI 10.1090/S1088-4165-97-00021-6
- T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 271–282. MR 763421
- Alexander Woo and Alexander Yong, Governing singularities of Schubert varieties, J. Algebra 320 (2008), no. 2, 495–520. MR 2422304, DOI 10.1016/j.jalgebra.2007.12.016
- Alexander Woo and Alexander Yong, A Gröbner basis for Kazhdan-Lusztig ideals, Amer. J. Math. 134 (2012), no. 4, 1089–1137. MR 2956258, DOI 10.1353/ajm.2012.0031
Bibliographic Information
- Charles Blundell
- Affiliation: DeepMind, London, United Kingdom
- MR Author ID: 962552
- Email: cblundell@google.com
- Lars Buesing
- Affiliation: DeepMind, London, United Kingdom
- MR Author ID: 822882
- Email: lbuesing@google.com
- Alex Davies
- Affiliation: DeepMind, London, United Kingdom
- Email: adavies@google.com
- Petar Veličković
- Affiliation: DeepMind, London, United Kingdom
- Email: petarv@google.com
- Geordie Williamson
- Affiliation: University of Sydney, Sydney, Australia
- MR Author ID: 845262
- Email: g.williamson@sydney.edu.au
- Received by editor(s): February 27, 2022
- Received by editor(s) in revised form: May 19, 2022
- Published electronically: November 16, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 1145-1191
- MSC (2020): Primary 05E10, 17B10
- DOI: https://doi.org/10.1090/ert/624
- MathSciNet review: 4510816