Formal degrees and the local theta correspondence: The quaternionic case
HTML articles powered by AMS MathViewer
- by Hirotaka Kakuhama
- Represent. Theory 26 (2022), 1192-1267
- DOI: https://doi.org/10.1090/ert/630
- Published electronically: December 20, 2022
- PDF | Request permission
Abstract:
In this paper, we determine a constant occurring in a local analogue of the Siegel-Weil formula, and describe the behavior of the formal degrees under the local theta correspondence for a quaternionic dual pair of almost equal rank over a non-Archimedean local field of characteristic $0$. As an application, we prove the formal degree conjecture of Hiraga, Ichino and Ikeda for the non-split inner forms of $\mathrm {Sp}_4$ and $\mathrm {GSp}_4$.References
- Anne-Marie Aubert and Roger Plymen, Plancherel measure for $\textrm {GL}(n,F)$ and $\textrm {GL}(m,D)$: explicit formulas and Bernstein decomposition, J. Number Theory 112 (2005), no. 1, 26–66. MR 2131140, DOI 10.1016/j.jnt.2005.01.005
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Alexandru Ioan Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math. 172 (2008), no. 2, 383–438. With an appendix by Neven Grbac. MR 2390289, DOI 10.1007/s00222-007-0104-8
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61. MR 546608
- Raphaël Beuzart-Plessis, Plancherel formula for $\textrm {GL}_n(F)\backslash \textrm {GL}_n(E)$ and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups, Invent. Math. 225 (2021), no. 1, 159–297. MR 4270666, DOI 10.1007/s00222-021-01032-6
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923, DOI 10.1007/BF02715544
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 0425030
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
- W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $G$, Canad. J. Math. 41 (1989), no. 3, 385–438. MR 1013462, DOI 10.4153/CJM-1989-019-5
- Kwangho Choiy, The local Langlands conjecture for the $p$-adic inner form of $\rm Sp_4$, Int. Math. Res. Not. IMRN 6 (2017), 1830–1889. MR 3658185, DOI 10.1093/imrn/rnw043
- Kwangho Choiy, On multiplicity in restriction of tempered representations of $p$-adic groups, Math. Z. 291 (2019), no. 1-2, 449–471. MR 3936078, DOI 10.1007/s00209-018-2091-4
- P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples $p$-adiques, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117 (French). MR 771672
- Benedict H. Gross and Wee Teck Gan, Haar measure and the Artin conductor, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1691–1704. MR 1458303, DOI 10.1090/S0002-9947-99-02095-4
- Wee Teck Gan and Atsushi Ichino, On endoscopy and the refined Gross-Prasad conjecture for $(\rm SO_5,SO_4)$, J. Inst. Math. Jussieu 10 (2011), no. 2, 235–324. MR 2787690, DOI 10.1017/S1474748010000198
- Wee Teck Gan and Atsushi Ichino, Formal degrees and local theta correspondence, Invent. Math. 195 (2014), no. 3, 509–672. MR 3166215, DOI 10.1007/s00222-013-0460-5
- Wee Teck Gan and Atsushi Ichino, The Gross-Prasad conjecture and local theta correspondence, Invent. Math. 206 (2016), no. 3, 705–799. MR 3573972, DOI 10.1007/s00222-016-0662-8
- Roger Godement and Hervé Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 0342495, DOI 10.1007/BFb0070263
- Benedict H. Gross and Mark Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), no. 3, 431–508. MR 2730575, DOI 10.1215/00127094-2010-043
- Benedict H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), no. 2, 287–313. MR 1474159, DOI 10.1007/s002220050186
- Wee Teck Gan and Gordan Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), no. 6, 1655–1694. MR 2999299, DOI 10.1112/S0010437X12000486
- Wee Teck Gan and Binyong Sun, The Howe duality conjecture: quaternionic case, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 175–192. MR 3753911, DOI 10.1007/978-3-319-59728-7_{6}
- Wee Teck Gan and Welly Tantono, The local Langlands conjecture for $\rm GSp(4)$, II: The case of inner forms, Amer. J. Math. 136 (2014), no. 3, 761–805. MR 3214276, DOI 10.1353/ajm.2014.0016
- Wee Teck Gan and Shuichiro Takeda, A proof of the Howe duality conjecture, J. Amer. Math. Soc. 29 (2016), no. 2, 473–493. MR 3454380, DOI 10.1090/jams/839
- Marcela Hanzer, Rank one reducibility for unitary groups, Glas. Mat. Ser. III 46(66) (2011), no. 1, 121–148. MR 2810933, DOI 10.3336/gm.46.1.12
- Volker Heiermann, Décomposition spectrale et représentations spéciales d’un groupe réductif $p$-adique, J. Inst. Math. Jussieu 3 (2004), no. 3, 327–395 (French, with English and French summaries). MR 2074429, DOI 10.1017/S1474748004000106
- Guy Henniart, La conjecture de Langlands locale pour $\textrm {GL}(3)$, Mém. Soc. Math. France (N.S.) 11-12 (1984), 186 (French, with English summary). MR 743063
- Kaoru Hiraga, Atsushi Ichino, and Tamotsu Ikeda, Formal degrees and adjoint $\gamma$-factors, J. Amer. Math. Soc. 21 (2008), no. 1, 283–304. MR 2350057, DOI 10.1090/S0894-0347-07-00567-X
- Michael Harris, Stephen S. Kudla, and William J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), no. 4, 941–1004. MR 1327161, DOI 10.1090/S0894-0347-96-00198-1
- Yasuhiko Ikematsu, Local theta lift for $p$-adic unitary dual pairs $\rm U(2)\times \rm U(1)$ and $\rm U(2)\times \rm U(3)$, Kyoto J. Math. 59 (2019), no. 4, 1075–1110. MR 4032207, DOI 10.1215/21562261-2019-0033
- Atsushi Ichino, Erez Lapid, and Zhengyu Mao, On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups, Duke Math. J. 166 (2017), no. 7, 1301–1348. MR 3649356, DOI 10.1215/00127094-0000001X
- Dihua Jiang, Chufeng Nien, and Yujun Qin, Symplectic supercuspidal representations of $\textrm {GL}(2n)$ over $p$-adic fields, Pacific J. Math. 245 (2010), no. 2, 273–313. MR 2669080, DOI 10.2140/pjm.2010.245.273
- Hirotaka Kakuhama, On the local factors of irreducible representations of quaternionic unitary groups, Manuscripta Math. 163 (2020), no. 1-2, 57–86. MR 4131991, DOI 10.1007/s00229-019-01153-6
- Tasho Kaletha, Rigid inner forms of real and $p$-adic groups, Ann. of Math. (2) 184 (2016), no. 2, 559–632. MR 3548533, DOI 10.4007/annals.2016.184.2.6
- Martin L. Karel, Functional equations of Whittaker functions on $p$-adic groups, Amer. J. Math. 101 (1979), no. 6, 1303–1325. MR 548883, DOI 10.2307/2374142
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- Stephen S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994), no. 1-3, 361–401. MR 1286835, DOI 10.1007/BF02773003
- J.-P. Labesse, Cohomologie, $L$-groupes et fonctorialité, Compositio Math. 55 (1985), no. 2, 163–184 (French). MR 795713
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181, DOI 10.1007/BFb0079929
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI 10.1007/BF01389041
- Erez M. Lapid and Stephen Rallis, On the local factors of representations of classical groups, Automorphic representations, $L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 309–359. MR 2192828, DOI 10.1515/9783110892703.309
- Yoichi Mieda, Parity of the Langlands parameters of conjugate self-dual representations of $\textrm {GL}(n)$ and the local Jacquet-Langlands correspondence, J. Inst. Math. Jussieu 19 (2020), no. 6, 2017–2043. MR 4167001, DOI 10.1017/s1474748019000045
- Goran Muić, On the structure of the full lift for the Howe correspondence of $(\textrm {Sp}(n),\textrm {O}(V))$ for rank-one reducibilities, Canad. Math. Bull. 49 (2006), no. 4, 578–591. MR 2269768, DOI 10.4153/CMB-2006-054-3
- Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060, DOI 10.1007/BFb0082712
- Patrice Perrin, Représentations de Schrödinger, indice de Maslov et groupe metaplectique, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin-New York, 1981, pp. 370–407 (French). MR 644841
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- A. Raghuram, On representations of $p$-adic $\textrm {GL}_2(\scr D)$, Pacific J. Math. 206 (2002), no. 2, 451–464. MR 1926786, DOI 10.2140/pjm.2002.206.451
- R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), no. 2, 335–371. MR 1197062, DOI 10.2140/pjm.1993.157.335
- François Sauvageot, Principe de densité pour les groupes réductifs, Compositio Math. 108 (1997), no. 2, 151–184 (French, with English and French summaries). MR 1468833, DOI 10.1023/A:1000216412619
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- Freydoon Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355. MR 610479, DOI 10.2307/2374219
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- Goro Shimura, Some exact formulas on quaternion unitary groups, J. Reine Angew. Math. 509 (1999), 67–102. MR 1679167, DOI 10.1515/crll.1999.042
- Binyong Sun and Chen-Bo Zhu, Conservation relations for local theta correspondence, J. Amer. Math. Soc. 28 (2015), no. 4, 939–983. MR 3369906, DOI 10.1090/S0894-0347-2014-00817-1
- J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas $p$-adique, $p\neq 2$, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 267–324 (French). MR 1159105
- J.-L. Waldspurger, La formule de Plancherel pour les groupes $p$-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333 (French, with French summary). MR 1989693, DOI 10.1017/S1474748003000082
- Shunsuke Yamana, Degenerate principal series representations for quaternionic unitary groups, Israel J. Math. 185 (2011), 77–124. MR 2837129, DOI 10.1007/s11856-011-0102-9
- Shunsuke Yamana, L-functions and theta correspondence for classical groups, Invent. Math. 196 (2014), no. 3, 651–732. MR 3211043, DOI 10.1007/s00222-013-0476-x
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Hirotaka Kakuhama
- Affiliation: Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- MR Author ID: 1397480
- ORCID: 0000-0002-8684-6810
- Email: hkaku@math.kyoto-u.ac.jp
- Received by editor(s): August 14, 2021
- Received by editor(s) in revised form: June 9, 2022
- Published electronically: December 20, 2022
- Additional Notes: This research was supported by JSPS KAKENHI Grant Number JP20J11509.
- © Copyright 2022 American Mathematical Society
- Journal: Represent. Theory 26 (2022), 1192-1267
- MSC (2020): Primary 11F27; Secondary 22E50
- DOI: https://doi.org/10.1090/ert/630
- MathSciNet review: 4524114