Stability of $\imath$canonical bases of irreducible finite type of real rank one
HTML articles powered by AMS MathViewer
- by Hideya Watanabe;
- Represent. Theory 27 (2023), 1-29
- DOI: https://doi.org/10.1090/ert/639
- Published electronically: March 6, 2023
- HTML | PDF | Request permission
Abstract:
It has been known since their birth in Bao and Wang’s work that the $\imath$canonical bases of $\imath$quantum groups are not stable in general. In the author’s previous work, the stability of $\imath$canonical bases of certain quasi-split types turned out to be closely related to the theory of $\imath$crystals. In this paper, we prove the stability of $\imath$canonical bases of irreducible finite type of real rank $1$, for which the theory of $\imath$crystals has not been developed, by means of global and local crystal bases.References
- Andrea Appel and Bart Vlaar, Universal K-matrices for quantum Kac-Moody algebras, Represent. Theory 26 (2022), 764–824. MR 4454332, DOI 10.1090/ert/623
- Shôrô Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34. MR 153782
- Martina Balagović and Stefan Kolb, The bar involution for quantum symmetric pairs, Represent. Theory 19 (2015), 186–210. MR 3414769, DOI 10.1090/ert/469
- Martina Balagović and Stefan Kolb, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math. 747 (2019), 299–353. MR 3905136, DOI 10.1515/crelle-2016-0012
- Huanchen Bao and Weiqiang Wang, Canonical bases in tensor products revisited, Amer. J. Math. 138 (2016), no. 6, 1731–1738. MR 3595499, DOI 10.1353/ajm.2016.0051
- Huanchen Bao and Weiqiang Wang, Canonical bases arising from quantum symmetric pairs, Invent. Math. 213 (2018), no. 3, 1099–1177. MR 3842062, DOI 10.1007/s00222-018-0801-5
- Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type $B$ via quantum symmetric pairs, Astérisque 402 (2018), vii+134 (English, with English and French summaries). MR 3864017
- Huanchen Bao and Weiqiang Wang, Canonical bases arising from quantum symmetric pairs of Kac-Moody type, Compos. Math. 157 (2021), no. 7, 1507–1537. MR 4277109, DOI 10.1112/S0010437X2100734X
- Daniel Bump and Anne Schilling, Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. Representations and combinatorics. MR 3642318, DOI 10.1142/9876
- V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
- Michael Ehrig and Catharina Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math. 331 (2018), 58–142. MR 3804673, DOI 10.1016/j.aim.2018.01.013
- The GAP Group, GAP – groups, algorithms, and programming, Version 4.11.1, 2021, https://www.gap-system.org.
- W. A. de Graaf and T. GAP Team, QuaGroup, Computations with quantum groups, Version 1.8.3, Refereed GAP package, 2022, https://gap-packages.github.io/quagroup/.
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, DOI 10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383–413. MR 1262212, DOI 10.1215/S0012-7094-94-07317-1
- Stefan Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469. MR 3269184, DOI 10.1016/j.aim.2014.08.010
- Stefan Kolb, The bar involution for quantum symmetric pairs—hidden in plain sight, Hypergeometry, integrability and Lie theory, Contemp. Math., vol. 780, Amer. Math. Soc., [Providence], RI, [2022] ©2022, pp. 69–77. MR 4476416, DOI 10.1090/conm/780/15687
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. MR 1088333, DOI 10.1090/S0894-0347-1991-1088333-2
- G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 17, 8177–8179. MR 1180036, DOI 10.1073/pnas.89.17.8177
- George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715, DOI 10.1007/978-0-8176-4717-9
- Vidas Regelskis and Bart Vlaar, Quasitriangular coideal subalgebras of $U_q(\mathfrak {g})$ in terms of generalized Satake diagrams, Bull. Lond. Math. Soc. 52 (2020), no. 4, 693–715. MR 4171396, DOI 10.1112/blms.12360
- H. Watanabe, Based modules over the $\imath$quantum group of type AI, Math. Z., To appear, arXiv:2103.12932.
- H. Watanabe, Crystal bases of modified $\imath$quantum groups of certain quasi-split types, arXiv:2110.07177, 2021.
Bibliographic Information
- Hideya Watanabe
- Affiliation: Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, Osaka 558-8585, Japan
- MR Author ID: 1196919
- ORCID: 0000-0002-7705-8783
- Email: watanabehideya@gmail.com
- Received by editor(s): July 17, 2022
- Received by editor(s) in revised form: November 12, 2022, and December 19, 2022
- Published electronically: March 6, 2023
- Additional Notes: This work was supported by JSPS KAKENHI Grant Numbers JP20K14286 and JP21J00013.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 1-29
- MSC (2020): Primary 17B37; Secondary 17B10
- DOI: https://doi.org/10.1090/ert/639
- MathSciNet review: 4556217