Unitriangular basic sets, Brauer characters and coprime actions
HTML articles powered by AMS MathViewer
- by Zhicheng Feng and Britta Späth;
- Represent. Theory 27 (2023), 115-148
- DOI: https://doi.org/10.1090/ert/635
- Published electronically: May 1, 2023
- HTML | PDF | Request permission
Abstract:
We show that the decomposition matrix of a given group $G$ is unitriangular, whenever $G$ has a normal subgroup $N$ such that the decomposition matrix of $N$ is unitriangular, $G/N$ is abelian and certain characters of $N$ extend to their stabilizer in $G$. Using the recent result by Brunat–Dudas–Taylor establishing that unipotent blocks have a unitriangular decomposition matrix, this allows us to prove that blocks of groups of quasi-simple groups of Lie type have a unitriangular decomposition matrix whenever they are related via Bonnafé–Dat–Rouquier’s equivalence to a unipotent block. This is then applied to study the action of automorphisms on Brauer characters of finite quasi-simple groups. We use it to verify the so-called inductive Brauer–Glauberman condition that aims to establish a Glauberman correspondence for Brauer characters, given a coprime action.References
- D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
- Cédric Bonnafé, Jean-François Dat, and Raphaël Rouquier, Derived categories and Deligne-Lusztig varieties II, Ann. of Math. (2) 185 (2017), no. 2, 609–670. MR 3612005, DOI 10.4007/annals.2017.185.2.5
- Michel Broué and Gunter Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, Math. Ann. 292 (1992), no. 2, 241–262 (French). MR 1149033, DOI 10.1007/BF01444619
- Michel Broué, Gunter Malle, and Jean Michel, Generic blocks of finite reductive groups, Astérisque 212 (1993), 7–92. Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235832
- Olivier Brunat, Olivier Dudas, and Jay Taylor, Unitriangular shape of decomposition matrices of unipotent blocks, Ann. of Math. (2) 192 (2020), no. 2, 583–663. MR 4151085, DOI 10.4007/annals.2020.192.2.7
- Julian Brough and Britta Späth, A criterion for the inductive Alperin weight condition, Bull. Lond. Math. Soc. 54 (2022), no. 2, 466–481. MR 4414997, DOI 10.1112/blms.12576
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756, DOI 10.1017/CBO9780511542763
- Marc Cabanes and Britta Späth, Equivariance and extendibility in finite reductive groups with connected center, Math. Z. 275 (2013), no. 3-4, 689–713. MR 3127033, DOI 10.1007/s00209-013-1156-7
- Marc Cabanes and Britta Späth, Equivariant character correspondences and inductive McKay condition for type $\mathsf A$, J. Reine Angew. Math. 728 (2017), 153–194. MR 3668994, DOI 10.1515/crelle-2014-0104
- Marc Cabanes and Britta Späth, Inductive McKay condition for finite simple groups of type $\mathsf {C}$, Represent. Theory 21 (2017), 61–81. MR 3662374, DOI 10.1090/ert/497
- Marc Cabanes and Britta Späth, Descent equalities and the inductive McKay condition for types $\mathsf B$ and $\mathsf E$, Adv. Math. 356 (2019), 106820, 48. MR 4011025, DOI 10.1016/j.aim.2019.106820
- Reda Chaneb, Basic sets for unipotent blocks of finite reductive groups in bad characteristic, Int. Math. Res. Not. IMRN 16 (2021), 1–26 [12613–12638 on table of contents]. MR 4300231, DOI 10.1093/imrn/rnaa019
- David A. Craven, Representation theory of finite groups: a guidebook, Universitext, Springer, Cham, 2019. MR 3970262, DOI 10.1007/978-3-030-21792-1
- David Denoncin, Stable basic sets for finite special linear and unitary groups, Adv. Math. 307 (2017), 344–368. MR 3590521, DOI 10.1016/j.aim.2016.11.015
- François Digne and Jean Michel, On Lusztig’s parametrization of characters of finite groups of Lie type, Astérisque 181-182 (1990), 6, 113–156 (English, with French summary). MR 1051245
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 95, Cambridge University Press, Cambridge, 2020. Second edition of [ 1118841]. MR 4211777, DOI 10.1017/9781108673655
- Richard Dipper, On the decomposition numbers of the finite general linear groups, Trans. Amer. Math. Soc. 290 (1985), no. 1, 315–344. MR 787968, DOI 10.1090/S0002-9947-1985-0787968-5
- Richard Dipper, On the decomposition numbers of the finite general linear groups. II, Trans. Amer. Math. Soc. 292 (1985), no. 1, 123–133. MR 805956, DOI 10.1090/S0002-9947-1985-0805956-7
- Niamh Farrell and Lucas Ruhstorfer, Fake Galois actions, J. Algebra Appl. 20 (2021), no. 8, Paper No. 2150133, 26. MR 4297317, DOI 10.1142/S0219498821501334
- Zhicheng Feng, The blocks and weights of finite special linear and unitary groups, J. Algebra 523 (2019), 53–92. MR 3900720, DOI 10.1016/j.jalgebra.2019.01.004
- Zhicheng Feng, Conghui Li, and Zhenye Li, The McKay conjecture for finite groups with abelian Sylow 3-subgroups, Algebra Colloq. 24 (2017), no. 2, 181–194. MR 3639029, DOI 10.1142/S1005386717000116
- Zhicheng Feng, Conghui Li, and Jiping Zhang, Equivariant correspondences and the inductive Alperin weight condition for type $\mathsf A$, Trans. Amer. Math. Soc. 374 (2021), no. 12, 8365–8433. MR 4337917, DOI 10.1090/tran/8463
- Zhicheng Feng, Conghui Li, and Jiping Zhang, Inductive blockwise Alperin weight condition for type $\mathsf B$ and odd primes, J. Algebra 604 (2022), 533–576. MR 4414823, DOI 10.1016/j.jalgebra.2022.03.046
- Zhicheng Feng and Gunter Malle, The inductive blockwise Alperin weight condition for type $\mathsf {C}$ and the prime 2, J. Aust. Math. Soc. 113 (2022), no. 1, 1–20. MR 4450909, DOI 10.1017/S1446788720000439
- Paul Fong and Bhama Srinivasan, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122–191. MR 988550
- M. Geck, Verallgemeinerte Gelfand–Graev Charaktere und Zerlegungszahlen endlicher Gruppen vom Lie–Typ, Dissertation, RWTH Aachen, 1990.
- Meinolf Geck, On the decomposition numbers of the finite unitary groups in nondefining characteristic, Math. Z. 207 (1991), no. 1, 83–89. MR 1106814, DOI 10.1007/BF02571376
- Meinolf Geck, Basic sets of Brauer characters of finite groups of Lie type. II, J. London Math. Soc. (2) 47 (1993), no. 2, 255–268. MR 1207947, DOI 10.1112/jlms/s2-47.2.255
- Meinolf Geck, An introduction to algebraic geometry and algebraic groups, Oxford Graduate Texts in Mathematics, vol. 10, Oxford University Press, Oxford, 2003. MR 2032320
- Meinolf Geck and Gunter Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. A guided tour. MR 4211779, DOI 10.1017/9781108779081
- George Glauberman, Fixed points in groups with operator groups, Math. Z. 84 (1964), 120–125. MR 162866, DOI 10.1007/BF01117119
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
- Jochen Gruber and Gerhard Hiss, Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math. 485 (1997), 55–91. MR 1442189, DOI 10.1515/crll.1997.485.55
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 460423
- I. Martin Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR 2426855, DOI 10.1090/gsm/092
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, MA, 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Alexander S. Kleshchev and Pham Huu Tiep, Representations of finite special linear groups in non-defining characteristic, Adv. Math. 220 (2009), no. 2, 478–504. MR 2466423, DOI 10.1016/j.aim.2008.09.011
- Conghui Li, The inductive blockwise Alperin weight condition for $\textrm {PSp}_{2n}(q)$ and odd primes, J. Algebra 567 (2021), 582–612. MR 4163078, DOI 10.1016/j.jalgebra.2020.09.037
- Gunter Malle, Local-global conjectures in the representation theory of finite groups, Representation theory—current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2017, pp. 519–539. MR 3644803
- Gunter Malle, Gabriel Navarro, and Britta Späth, Invariant blocks under coprime actions, Doc. Math. 20 (2015), 491–506. MR 3477914, DOI 10.4171/dm/496
- Gunter Malle and Britta Späth, Characters of odd degree, Ann. of Math. (2) 184 (2016), no. 3, 869–908. MR 3549625, DOI 10.4007/annals.2016.184.3.6
- Gunter Malle and Donna Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737, DOI 10.1017/CBO9780511994777
- Gabriel Navarro, Some open problems on coprime action and character correspondences, Bull. London Math. Soc. 26 (1994), no. 6, 513–522. MR 1315600, DOI 10.1112/blms/26.6.513
- G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
- Gabriel Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics, vol. 175, Cambridge University Press, Cambridge, 2018. MR 3753712, DOI 10.1017/9781108552790
- Gabriel Navarro and Britta Späth, On Brauer’s height zero conjecture, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 695–747. MR 3191974, DOI 10.4171/JEMS/444
- Gabriel Navarro, Britta Späth, and Pham Huu Tiep, Coprime actions and correspondences of Brauer characters, Proc. Lond. Math. Soc. (3) 114 (2017), no. 4, 589–613. MR 3653241, DOI 10.1112/plms.12016
- Lucas Ruhstorfer, On the Bonnafé-Dat-Rouquier Morita equivalence, J. Algebra 558 (2020), 660–676. MR 4102127, DOI 10.1016/j.jalgebra.2019.10.005
- Britta Späth, Inductive McKay condition in defining characteristic, Bull. Lond. Math. Soc. 44 (2012), no. 3, 426–438. MR 2966987, DOI 10.1112/blms/bdr100
- Britta Späth, A reduction theorem for the blockwise Alperin weight conjecture, J. Group Theory 16 (2013), no. 2, 159–220. MR 3031870, DOI 10.1515/jgt-2012-0032
- Britta Späth, Inductive conditions for counting conjectures via character triples, Representation theory—current trends and perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2017, pp. 665–680. MR 3644809
- Britta Späth, Reduction theorems for some global-local conjectures, Local representation theory and simple groups, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2018, pp. 23–61. MR 3821137
- B. Späth, Extensions of characters and the inductive McKay condition in type $\mathsf D$, II, submitted.
- Britta Späth and Carolina Vallejo Rodríguez, Brauer characters and coprime action, J. Algebra 457 (2016), 276–311. MR 3490083, DOI 10.1016/j.jalgebra.2016.01.042
- Bhama Srinivasan, The characters of the finite symplectic group $\textrm {Sp}(4,\,q)$, Trans. Amer. Math. Soc. 131 (1968), 488–525. MR 220845, DOI 10.1090/S0002-9947-1968-0220845-7
- Katsuhiro Uno, Character correspondences in $p$-solvable groups, Osaka J. Math. 20 (1983), no. 4, 713–725. MR 727426
- Donald L. White, Decomposition numbers of $\textrm {Sp}(4,q)$ for primes dividing $q\pm 1$, J. Algebra 132 (1990), no. 2, 488–500. MR 1061493, DOI 10.1016/0021-8693(90)90143-C
- Donald L. White, The $2$-decomposition numbers of $\textrm {Sp}(4,q)$, $q$ odd, J. Algebra 131 (1990), no. 2, 703–725. MR 1058575, DOI 10.1016/0021-8693(90)90204-2
- Donald L. White, Brauer trees of $\textrm {Sp}(4,q)$, Comm. Algebra 20 (1992), no. 3, 645–653. MR 1153039, DOI 10.1080/00927879208824364
Bibliographic Information
- Zhicheng Feng
- Affiliation: School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
- Address at time of publication: SICM and Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- Email: zfeng@pku.edu.cn
- Britta Späth
- Affiliation: School of Mathematics and Natural Sciences, University of Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany
- ORCID: 0000-0002-4593-5729
- Email: bspaeth@uni-wuppertal.de
- Received by editor(s): November 28, 2021
- Received by editor(s) in revised form: July 5, 2022, July 18, 2022, September 16, 2022, and October 17, 2022
- Published electronically: May 1, 2023
- Additional Notes: The first author was financially supported by NSFC (11901028 and 11631001). The research of the second author was conducted in the framework of the research training group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology, funded by the DFG
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 115-148
- MSC (2020): Primary 20C20, 20C33
- DOI: https://doi.org/10.1090/ert/635
- MathSciNet review: 4582765