Realizations of $A_1^{(1)}$-modules in category $\widetilde {\mathcal O}$
HTML articles powered by AMS MathViewer
- by Fulin Chen, Yun Gao and Shaobin Tan;
- Represent. Theory 27 (2023), 149-176
- DOI: https://doi.org/10.1090/ert/632
- Published electronically: May 11, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we give an explicit realization of all irreducible modules in Chari’s category $\widetilde {\mathcal O}$ for the affine Kac-Moody algebra $A_{1}^{(1)}$ by using the idea of free fields. We work on a much more general setting which also gives us explicit realizations of all simple weight modules for certain current algebra of $\mathfrak {sl}_2(\mathbb {C})$ with finite weight multiplicities, including the polynomial current algebra $\mathfrak {sl}_2(\mathbb {C})\otimes \mathbb {C}[t]$, the loop algebra $\mathfrak {sl}_2(\mathbb {C})\otimes \mathbb {C}[t,t^{-1}]$ and the three-point Lie algebra $\mathfrak {sl}_2(\mathbb {C})\otimes \mathbb {C}[t,t^{-1},(t-1)^{-1}]$ arisen in the work by Kazhdan-Lusztig.References
- Matthew Bennett, Vyjayanthi Chari, and Nathan Manning, BGG reciprocity for current algebras, Adv. Math. 231 (2012), no. 1, 276–305. MR 2935389, DOI 10.1016/j.aim.2012.05.005
- D. Bernard and G. Felder, Fock representations and BRST cohomology in $\textrm {SL}(2)$ current algebra, Comm. Math. Phys. 127 (1990), no. 1, 145–168. MR 1036119, DOI 10.1007/BF02096498
- I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, On a category of g-modules, Funktsional. Anal. i Prilozhen. 10 (1976), 1–8; English transl. Funct. Anal. Appl. 10 (1976), no. 2, 87–92.
- Yuly Billig and Kaiming Zhao, Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004), no. 1-2, 23–42. MR 2048305, DOI 10.1016/j.jpaa.2003.12.004
- Murray Bremner, Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring in one variable, Canad. Math. Bull. 37 (1994), no. 1, 21–28. MR 1261553, DOI 10.4153/CMB-1994-004-8
- Murray Bremner, Four-point affine Lie algebras, Proc. Amer. Math. Soc. 123 (1995), no. 7, 1981–1989. MR 1249871, DOI 10.1090/S0002-9939-1995-1249871-8
- Daniel Britten, Michael Lau, and Frank Lemire, Weight modules for current algebras, J. Algebra 440 (2015), 245–263. MR 3373395, DOI 10.1016/j.jalgebra.2015.05.025
- Vyjayanthi Chari, Integrable representations of affine Lie-algebras, Invent. Math. 85 (1986), no. 2, 317–335. MR 846931, DOI 10.1007/BF01389093
- Vyjayanthi Chari and Jacob Greenstein, Current algebras, highest weight categories and quivers, Adv. Math. 216 (2007), no. 2, 811–840. MR 2351379, DOI 10.1016/j.aim.2007.06.006
- Vyjayanthi Chari and Jacob Greenstein, Graded level zero integrable representations of affine Lie algebras, Trans. Amer. Math. Soc. 360 (2008), no. 6, 2923–2940. MR 2379781, DOI 10.1090/S0002-9947-07-04394-2
- Vyjayanthi Chari and Bogdan Ion, BGG reciprocity for current algebras, Compos. Math. 151 (2015), no. 7, 1265–1287. MR 3371494, DOI 10.1112/S0010437X14007908
- Vyjayanthi Chari and Sergei Loktev, Weyl, Demazure and fusion modules for the current algebra of $\mathfrak {s}\mathfrak {l}_{r+1}$, Adv. Math. 207 (2006), no. 2, 928–960. MR 2271991, DOI 10.1016/j.aim.2006.01.012
- Vyjayanthi Chari and Andrew Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), no. 1, 87–104. MR 849057, DOI 10.1007/BF01458586
- Vyjayanthi Chari and Andrew Pressley, Integrable representations of twisted affine Lie algebras, J. Algebra 113 (1988), no. 2, 438–464. MR 929772, DOI 10.1016/0021-8693(88)90171-8
- Ben L. Cox, Fock space realizations of imaginary Verma modules, Algebr. Represent. Theory 8 (2005), no. 2, 173–206. MR 2162281, DOI 10.1007/s10468-005-0857-y
- Ben Cox, Realizations of the four point affine Lie algebra $\mathfrak {sl}(2,R)\oplus (\Omega _R/dR)$, Pacific J. Math. 234 (2008), no. 2, 261–289. MR 2373448, DOI 10.2140/pjm.2008.234.261
- Ben L. Cox and Vyacheslav Futorny, Structure of intermediate Wakimoto modules, J. Algebra 306 (2006), no. 2, 682–702. MR 2271362, DOI 10.1016/j.jalgebra.2006.08.019
- Ben Cox and Elizabeth Jurisich, Realizations of the three-point Lie algebra $\mathfrak {sl}(2,{\scr R})\oplus (\Omega _{{\scr R}}/d{\scr R})$, Pacific J. Math. 270 (2014), no. 1, 27–47. MR 3245847, DOI 10.2140/pjm.2014.270.27
- Jan de Boer and László Fehér, Wakimoto realizations of current algebras: an explicit construction, Comm. Math. Phys. 189 (1997), no. 3, 759–793. MR 1482938, DOI 10.1007/s002200050228
- Vyacheslav Futorny, Dimitar Grantcharov, and Renato A. Martins, Localization of free field realizations of affine Lie algebras, Lett. Math. Phys. 105 (2015), no. 4, 483–502. MR 3323663, DOI 10.1007/s11005-015-0752-3
- S. Eswara Rao, Classification of loop modules with finite-dimensional weight spaces, Math. Ann. 305 (1996), no. 4, 651–663. MR 1399709, DOI 10.1007/BF01444242
- Boris L. Feigin and Edward V. Frenkel, Representations of affine Kac-Moody algebras and bosonization, Physics and mathematics of strings, World Sci. Publ., Teaneck, NJ, 1990, pp. 271–316. MR 1104262
- Boris L. Feĭgin and Edward V. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys. 128 (1990), no. 1, 161–189. MR 1042449, DOI 10.1007/BF02097051
- G. Fourier and P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), no. 2, 566–593. MR 2323538, DOI 10.1016/j.aim.2006.09.002
- V. M. Futorny, Imaginary Verma modules for affine Lie algebras, Canad. Math. Bull. 37 (1994), no. 2, 213–218. MR 1275706, DOI 10.4153/CMB-1994-031-9
- V. M. Futorny, Irreducible non-dense $A^{(1)}_1$-modules, Pacific J. Math. 172 (1996), no. 1, 83–99. MR 1379287, DOI 10.2140/pjm.1996.172.83
- Vyacheslav Futorny and Libor Křižka, Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras, J. Pure Appl. Algebra 223 (2019), no. 11, 4901–4924. MR 3955047, DOI 10.1016/j.jpaa.2019.02.021
- Vyacheslav Futorny, Libor Křižka, and Petr Somberg, Geometric realizations of affine Kac-Moody algebras, J. Algebra 528 (2019), 177–216. MR 3933255, DOI 10.1016/j.jalgebra.2019.03.011
- Yuji Hara, Naihuan Jing, and Kailash Misra, BRST resolution for the principally graded Wakimoto module of $\widehat {\mathfrak {s}\mathfrak {l}}_2$, Lett. Math. Phys. 58 (2001), no. 3, 181–188 (2002). MR 1892918, DOI 10.1023/A:1014559525117
- H. P. Jakobsen and V. G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, Nonlinear equations in classical and quantum field theory (Meudon/Paris, 1983/1984) Lecture Notes in Phys., vol. 226, Springer, Berlin, 1985, pp. 1–20. MR 802097, DOI 10.1007/3-540-15213-X_{6}7
- Hans Plesner Jakobsen and Victor Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras. II, J. Funct. Anal. 82 (1989), no. 1, 69–90. MR 976313, DOI 10.1016/0022-1236(89)90092-X
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Iryna Kashuba and Renato A. Martins, Free field realizations of induced modules for affine Lie algebras, Comm. Algebra 42 (2014), no. 6, 2428–2441. MR 3169716, DOI 10.1080/00927872.2012.758270
- D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc. 6 (1993), no. 4, 905–947, 949–1011. MR 1186962, DOI 10.1090/S0894-0347-1993-99999-X
- Olivier Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 537–592 (English, with English and French summaries). MR 1775361, DOI 10.5802/aif.1765
- Renato A. Martins, $\Bbb J$-intermediate Wakimoto modules, Comm. Algebra 41 (2013), no. 10, 3591–3612. MR 3169474, DOI 10.1080/00927872.2012.673334
- Michael Lau, Classification of Harish-Chandra modules for current algebras, Proc. Amer. Math. Soc. 146 (2018), no. 3, 1015–1029. MR 3750215, DOI 10.1090/proc/13834
- Matthew Szczesny, Wakimoto modules for twisted affine Lie algebras, Math. Res. Lett. 9 (2002), no. 4, 433–448. MR 1928864, DOI 10.4310/MRL.2002.v9.n4.a4
- Minoru Wakimoto, Fock representations of the affine Lie algebra $A^{(1)}_1$, Comm. Math. Phys. 104 (1986), no. 4, 605–609. MR 841673, DOI 10.1007/BF01211068
- Benjamin J. Wilson, A character formula for the category $\tilde {\scr O}$ of modules for affine $\rm sl(2)$, Int. Math. Res. Not. IMRN , posted on (2008), Art. ID rnn 092, 29. MR 2439548, DOI 10.1093/imrn/rnn092
- Benjamin J. Wilson, Highest-weight theory for truncated current Lie algebras, J. Algebra 336 (2011), 1–27. MR 2802528, DOI 10.1016/j.jalgebra.2011.04.015
Bibliographic Information
- Fulin Chen
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- MR Author ID: 936518
- Email: chenf@xmu.edu.cn
- Yun Gao
- Affiliation: Department of Mathematics and Statistics, York University, Toronto M3J 1P3, Canada
- Email: ygao@yorku.ca
- Shaobin Tan
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- Email: tans@xmu.edu.cn
- Received by editor(s): July 19, 2021
- Received by editor(s) in revised form: September 27, 2022
- Published electronically: May 11, 2023
- Additional Notes: The first author was partially supported by China NSF grant (Nos. 11971397, 12161141001). The second author was partially supported by NSERC of Canada and NSFC grant 11931009. The third author was partially supported by China NSF grant (No. 12131018)
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 149-176
- MSC (2020): Primary 17B67
- DOI: https://doi.org/10.1090/ert/632
- MathSciNet review: 4587549