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INDUCTION EQUIVALENCE FOR EQUIVARIANT D-MODULES
ON RIGID ANALYTIC SPACES

KONSTANTIN ARDAKOV

ABSTRACT. We prove an Induction Equivalence and a Kashiwara Equivalence
for coadmissible equivariant D-modules on rigid analytic spaces. This allows us
to completely classify such objects with support in a single orbit of a classical
point with co-compact stabiliser. As an application, we use the locally analytic
Beilinson-Bernstein equivalence to construct new examples of large families of
topologically irreducible locally analytic representations of certain compact
semisimple p-adic Lie groups.
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1. INTRODUCTION

1.1. Support of equivariant D-modules on rigid analytic spaces. Let G be
a p-adic Lie group and let K be a non-archimedean field of mixed characteristic
(0,p). In our recent work [4], we introduced the category Cx, of coadmissible
G-equivariant D-modules on a smooth rigid K-analytic space X, which serves as
a p-adic analogue of the classical category of coherent D-modules on a smooth
complex algebraic variety that are strongly equivariant with respect to the ac-
tion of a real or complex Lie group. The main motivation for this construction
is the Beilinson-Bernstein-style Localisation Theorem — 4, Theorem C] — which,
combined with the Schneider-Teitelbaum equivalence [27, Theorem 6.3], gives an
anti-equivalence of categories V' + Loc(V}/) between the category of admissible lo-
cally analytic G-representations V of G with trivial infinitesimal central character
and the category of coadmissible G-equivariant D-modules on the rigid analytic
flag variety associated with the semisimple p-adic Lie group G.
In this paper, we start to address the following basic question.
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Question. Given an admissible locally analytic representation V' as above, what
can be the support of the sheaf Loc(V}/)?

In the classical situation, if M is a strongly equivariant D-module on a complex
algebraic variety, then it is in particular a coherent D-module and therefore its
support is closed in the Zariski topology. When we interpret an object M € Cx /¢
as a sheaf M on the Huber space X associated with X, for formal reasons, the
support Supp(M) of M is necessarily a G-stable subset of X which detects whether
M is non-zero in the sense that Supp(M) # () if and only if M # 0. Taking our
cue from the classical situation, as well as from an examination of the currently
known list of examples, we expect that when M # 0,

(i) Supp(/\;l) is a closed subset of the topological space X,

(ii) Supp(M) N X is always non-empty.
In the first instance, we focus our attention on those objects M € Cx,g whose
support is as small as possible, set-theoretically. Guided by the expectations (i)
and (ii) above, this means considering supports of the form G -z where z € X.
Note that the requirement that this is a closed subset of X already puts a severe
restriction on the possible values of z: for example, it can be shown that when
G = SLy(L) for some finite extension L of Q, contained in K, acting on the rigid
analytic K-projective line X = ]P’}(’an by Mébius transformations, then the G-orbit
G -z of a point z € X = PY(K)/Gal(K/K) is closed in the Huber space X if and
only if z € PY(L).

1.2. The main result. Suppose, then, that z € X is such that G - z is closed in
X. We are able to completely classify the M € Cx /g that are supported on G - z.
In order to state our main result precisely, we need Definitions [[.2.1] and [.2.2]

Definition 1.2.1. Let S be a subset of X.
(a) Let M be an abelian sheaf on X. We say that M is supported on S if
M,y = 0 for every admissible open subset V of X\S.
(b) Let Ci/g denote the full subcategory of Cx /¢ consisting of those M € Cx /¢
that are supported on S.

We show in Lemma 2.1.2] that an abelian sheaf M on X is supported on S in
this sense if and only if the support Supp(M) of the associated sheaf M on X is
contained in the closure S of S in X.

Definition 1.2.2. Let G be a group acting on a set X and let Y be a subset of
X. We say that the G-orbit of Y is regular in X if distinct G-translates of Y are
disjoint: for all g € G we have (Y NY A0 = gY =Y.

Evidently this condition is satisfied whenever Y = {z} is a singleton. When it
fails, the space GY is somehow “singular” at points that happen to lie on more
than one distinct G-translate of Y; hence the choice of terminology.

Recall from [7, Definition 9.5.2/1] that a subset Y of a rigid analytic variety
X is said to be closed analytic if it is equal to the vanishing locus V(.#) of some
coherent ideal sheaf . of Ox. We call these subsets Zariski closed in this paper.

With these definitions in place, our main result reads as follows.

Theorem A. Let G be a p-adic Lie group acting continuously on a rigid analytic
space X, and let Y be a Zariski closed subset of X. Suppose that



INDUCTION EQUIVALENCE FOR EQUIVARIANT D-MODULES 179

(a) X is smooth and separated,

(b) Y is irreducible and quasi-compact,

(c) the G-orbit of Y is regular in X, and

(d) the stabiliser Gy of Y is co-compact in G.
L

Then the functor of sections supported on Y gives an equivalence of categories
0 .pGY = n»Y
Hy 1 Cxje — Cx/ay -

Unfortunately, Theorem [A] requires a large number of conditions: we proceed
to discuss these in turn. Condition (a) on X is not restrictive at all, because the
category Cx /¢ has only been defined in the case where X is smooth, and many rigid
spaces occurring in nature are separated. Condition (b) is slightly more restrictive,
but is satisfied in many examples of interest. Both (a) and (b) are needed to ensure
that the triple (X,Y, G) satisfies a certain technical condition that we call the Local
Stabiliser Condition — see Definition — which is in turn needed to ensure
that the local cohomology functor HY preserves coadmissibility.

The most restrictive condition in Theorem [A] is condition (c). As we show in
ExampleB.Z18 and Remark[3.4.19] this condition cannot be simply omitted, as then
HS, does not preserve coadmissibility and Theorem [Al does not hold. Reflecting on
Example BZI8] it seems that condition (c) is close to being necessary. Away from
the somewhat trivial case where Y is a point, unfortunately we had to work quite
hard to come up with examples of triples (X,Y, G) where this regularity condition
on Y is satisfied. Indeed, we show in § that when X = P™?" is a projective
space, its Zariski closed subvariety Y has positive dimension and G is a subgroup
of GL,,+1(L) which contains a transvection[] then this condition is never satisfied.
On a more positive note, in Theorem [D| we give an explicit example of a triple
(X,Y,G) where the G-orbit of Y in X is regular and Y is bigger than a point.
There, Y is some particular ruled surface inside the (3-dimensional) rigid analytic
flag variety X of GL4, and G is the group of units of some p-adic division algebra
of degree 4. In forthcoming work with Tobias Schmidt, we will apply Theorem [Al
in other interesting situations where Y is bigger than a single point.

Let B be a closed subgroup of G. In §2.2] we construct an induction functor
indg : Cx/p — Cx/¢ which, in the setting of Theorem [Al serves as an inverse
to the local cohomology functor HY with B = Gy. In order to be able to show
that this induction functor preserves coadmissibility, we have to assume that the
homogeneous space G/B is compact: this explains the presence of condition (d)
in the statement of Theorem [Al Note that in the case where Y is a point, {z}
say, the co-compactness of the stabiliser — or equivalently, the compactness of the
G-orbit G - © — is essentially forced upon us by our expectation (see §I.1]) that
this orbit is closed in X whenever X happens to be quasi-compact. Because the
rigid analytic flag variety of relevance to the locally analytic Beilinson-Bernstein
Localisation Theorem, [4, Theorem C] always happens to be quasi-compact, this
final restriction in Theorem [A]is not particularly onerous.

1.3. The equivariant Kashiwara equivalence. In those situations where The-
orem [Al does apply, one is left with the task of analysing the category C;({ /Gy
although the group G has been replaced by its smaller subgroup Gy, the objects

1An element h € GLp41(L) such that rk(h — 1) = 1.
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in this category are still certain D-modules on X. Our second main result explains
how to deal with this category in the case where Y happens to be smooth.

Theorem B. Let ¢ : Y — X be the inclusion of a smooth, Zariski closed subset
Y into the smooth rigid analytic space X. Let G be a p-adic Lie group acting
continuously on X and stabilising Y. Then there are natural functors

ty 1 Cyja — C;([/G and A C;((/G —Cy/a
which are mutually inverse equivalences of abelian categories.

Theorem [Blis proved at the end of §3.4l Combining Theorems [Al and [B] gives

Corollary 1.3.1. Let G be a p-adic Lie group acting continuously on a rigid ana-
lytic space X, and let Y be a Zariski closed subset of X. Suppose that

(a) X is smooth and separated,

(b) Y is smooth, irreducible and quasi-compact,
(c) the G-orbit of Y is regular in X, and

(d) the stabiliser Gy of Y is co-compact in G.

Then there is an equivalence of categories
FoMS C)G(?(G — Cy /Gy -

Let us now specialise to the case where Y is a classical point {z}, so that
conditions (b) and (c) in Corollary [L3.1] are satisfied automatically.

Corollary 1.3.2. Let G be a p-adic Lie group acting continuously on a smooth,
separated rigid analytic space X and let x € X. Suppose that the stabiliser G, of =
is co-compact in G. Then there is an equivalence of categories

Fodto ’H?z} : C§§/”G = Cpe(G,,K)-

Here D*°(G,, K) is the algebra of smooth distributions on G, from [26]; the
equivalence between Ci;3,q, and the category Cpe(g, k) of coadmissible
D*>(G,, K)-modules is given by the global sections functor I' — see [4, Theorem

B(c)].

1.4. Applications to locally analytic representations. Combining Corollary
together with [4, Theorem C] and [27, Theorem 6.3], we obtain the following
consequences for the locally analytic representation theory of p-adic semisimple
groups. Following [27, §6], we will use Repk (@) to denote the abelian category
of all admissible locally L-analytic G-representations over K with continuous K-
linear maps, and we will use Rep%' (G) to denote its full subcategory consisting of

the admissible smooth G-representations.

Theorem C. Let L be a finite extension of Q, contained in K, let G be an affine
algebraic L-group such that Gg := G ®p K 1is connected and split semisimple, and
let G be an open subgroup of G(L), and let X := (G /B)"® be the rigid K -analytic
flag variety associated with G .
(a) Suppose that the stabiliser G, of the classical point x € X is co-compact in
G. Then there is a fully faithful and exact embedding of abelian categories
ju : Rep(G) = Rep ™ (G)

given by j. (V) = P(X,indgm L LOC?:;(GQE,K) VY.
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(b) Let y € X be another classical point with co-compact stabiliser G, and
suppose that y ¢ G - x. Then the essential images of j, and j, contain no
non-zero isomorphic objects.

Of course the essential image of j, may be characterised as the full subcategory
of G-representations V € Repk ™ (G) such that the support of LOC)D((G’K)(VZ) is
contained in G - z.

In the case where the open subgroup G of G(L) happens to be compact, the con-
dition on the stabiliser G, imposed in Theorem [Clis vacuous. In this case, for every
x € X and every irreducible admissible smooth representation V' of G, Theorem [C]
produces a topologically irreducible admissible locally L-analytic G-representation
Jz(V). Furthermore, another such representation j, (W) can be isomorphic to j, (V)
(even after a base-change to a finite extension of K) only if y lies in the same G-
orbit as x. Note that because the field of definition L is far from being algebraically
closed, the rigid analytic variety X admits a very large collection of “irrational”
G-orbits G - z: we can choose any increasing sequence L C Ly C Ly C Ly C -+ of
finite Galois extensions of L such that the semisimple affine algebraic group Gy,
is split with flag variety X, and pick a point z, € X(L,)\X(L,—1) for each n > 1;
then G - x,, is necessarily contained in X(L,)\X(L,_1) and hence G -z, # G -z,
whenever n < m. The image of each of these orbits in X = X(K)/Gal(K/K)
then produces at least one irreducible admissible G-representation, namely j, (K)
where K is the trivial G -representation. In this way, we obtain a large family of
pairwise non-isomorphic topologically irreducible admissible locally L-analytic G-
representations whenever G is a compact open subgroup of G(L). As we explained
in §IT1 in the case where G is the group G(L) itself, the restriction that G, is co-
compact is far more restrictive, because it essentially forces x to be an L-rational
point of X, and then j,(V) is a principal series representation of G. Nevertheless,
in this case Theorem [C]l may be used to establish the topological irreducibility of
these representations.

In [T9], Kisin and Strauch constructed examples of topologically irreducible lo-
cally L-analytic representations V, 3 associated with certain open G-orbits H =
G-z contained in P*(E), where E is some finite extension of L and G is some locally
L-analytic subgroup of GLy(E) such that E - Lie(G) contains sla(F). They also
proved that their representations are admissible whenever the orbit H is compact.
We expect that it can be shown that Theorem [C] gives a generalisation of their
construction at least when G is open in SLy(L) and G = SLo : then the dual
(Van)p, of Vi 3 should be isomorphic to j,(K) for those values of x where V, 3
has trivial infinitesimal central character. Theorem [C] will then give a new proof of
the topological irreducibility of the Kisin-Strauch representations which does not
use Schneider-Teitelbaum’s p-adic Fourier transform from [25]. Describing the lo-
calisations of the D(G, K)-modules (Vy %)} for other values of x will involve the
theory of twisted G-equivariant D-modules, as was developed in [21].

1.5. A new class of topologically irreducible representations. The represen-
tations constructed above are all associated with G-orbits of the form G - x where x
is a classical point of the rigid analytic flag variety. Our last main result, Theorem
D] gives an explicit example of a large collection of triples (X,Y,G) where the
G-orbit of Y is regular in X with dimY > 0.
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Let D be a division algebra of degree 4 and dimension 16 over L and let G be
the connected L-form of GL, such that G(L) = D*. We say that z € G(K) is
generic if the L-algebra homomorphism z : O(G) — K is injective. We also recall
that the twisted cubic is the projective curve C' C P? defined by the homogeneous
equations oLy = I%, T1T3 = I%,IQI:}, = T1T3.

Theorem D. Suppose that K contains an algebraic closure of L. Let D be a
division algebra of degree 4 over L and let G be the connected L-form of GLy such
that G(L) = D*. Let X be the flag variety of GLy and let Y be the preimage in X
of the twisted cubic C' in P3 under either one of the two projection maps X — P3.
Let Y C X be the corresponding rigid analytic varieties over K. Then the D> -orbit
of €Y is regular in X for any generic x € G(K).

The centre of the group D* acts trivially on the rigid analytic flag variety. Since
D* is compact modulo its centre, we can combine Theorem [D] Corollary [L3.1]
and [, Theorem C], to obtain new examples of topologically irreducible admissible
locally L-analytic D*-representations over K of the form

V(zY) :=T'(X, indg;Y 1+ Oy )

for every generic x € G(K). Note that V(2Y) is not isomorphic to V(2'Y) if
D*xY # D*2'Y, because

Supp Loc(V (2Y);,) = D*zY.

GY ~ oY
2. THE INDUCTION EQUIVALENCE CX/G = CX/GY

2.1. Berkovich and Huber spaces. Recall from [28], §5] that to every rigid an-
alytic space X we can associate two topological spaces Z(X) and .#(X), which
we call the Huber space and the Berkovich space, respectively. The elements of
P(X) are the prime filters on the admissible open subsets of X, and the elements
of .#(X) are the maximal filters. The sets of the form U := {p € 2(X) : U € p}
as U ranges over the admissible open subsets of X form a basis for the topology on
Z(X). There is a natural commutative diagram

In this diagram, the inclusions from X into .Z(X) and Z(X) send z € X to
m,, := {admissible open U C X : 2 € U} (the principal maximal filter on x), and
the continuous retraction map r sends p € Z(X) to the unique maximal filter r(p)
containing p. If X is quasi-compact and quasi-separated (qcgs), then both £2(X)
and .# (X)) are quasi-compact, and .#(X) is Hausdorff. In fact, when X is qcgs, the
retraction map r realises .# (X) as the maximal Hausdorff quotient space of Z2(X).
We will identify X with its image in &?(X). By [28] §5] there is an equivalence of
categories between the abelian sheaves on X and the abelian sheaves on Z(X).
Given an abelian sheaf M on X, we will denote the corresponding sheaf on &2(X)
by M:; it follows from the proof of [28, Theorem 1] that M(W) = M(W) for any
admissible open subset W of X.



INDUCTION EQUIVALENCE FOR EQUIVARIANT D-MODULES 183

Definition 2.1.1. Let S be a subset of X and let M be an abelian sheaf on X.
We say that M is supported on S if M|y = 0 for every admissible open subset U
of X\S.

The intuition behind Definition E-TT]is explained by the following

Lemma 2.1.2. Let S be a subset of X. An abelian sheaf M on X is supported on
S if and only if Supp(M) is contained in the closure S of S in P (X).

Proof. By the support of an abelian sheaf F on a topological space X we mean the
set Supp(F) := {x € X : F, # 0}. Suppose that M is supported on S and that
Mp # 0 for some p € &(X). Then for all open sets U 3 p there is an admissible
open V C X such that p € V € U and M(V) # 0. Then V cannot be contained
X\S and thus VNS # (). Hence UNS # Pand p € S. Conversely, if Supp(M) C S,
let U be an admissible open subset of X\S. Then UNnsS=UnXNS=UNS =40,
so UNS = 0. Hence /\/l =0forall p€ U whence M‘U = 0. Therefore My =0,
which means that M is supported on S. O

We refer the reader to [14, §1] for standard notation from the theory of local
cohomology of abelian sheaves on topological spaces.

Definition 2.1.3. Let M be an abelian sheaf on X and let S be a subset of X.
(a) We define the subgroup of sections of M supported on S to be

Ts(M) := HY(M) := HYM) = ker (M(X) — M(2(X)\5))
(b) We also have the presheaf H%(M), given by
HL(M)(U) := M) = ker (M(U) — M(U\3))

for every admissible open U of X.

UﬂS(

Lemma 2.1.4. Suppose that X\S is an admissible open subset of X. Then the
closure S of S in P (X) equals 2(X)\X\S.

Proof. If s € S then s ¢ X\ S so X\S ¢ ms; and m; ¢ }/(\\,/S' Since }/(\\,/S' is open, this
implies that S € 2(X)\X\S. Let U be a basic open neighbourhood of an element

p € Z(X)\X\S. Then X\S ¢ p, so U cannot be contained in X\S because p is a
filter and because U € p. So SNU # () and SNU # (. This implies that p € S. O

Corollary 2.1.5. Suppose that X\S is an admissible open subset of X and M is an
abelian sheaf on X. Then H3(M) = ker(M(X) — M(X\S)) and HL(M)(U) =
ker(M(U) — M(U\S)) for every admissible open subset U in X.

Proof. By Lemma ZI4 M(2(X)\S) = M(X\S) = M(X\S). O

We return to the setting of equivariant D-modules. Let G be a p-adic Lie group
acting continuously on the rigid analytic space X.

Lemma 2.1.6. Let M be a G-equivariant D-module on X and let S be a subset of
X. Then

(a) HE(M) is a Gg-equivariant D-module on X, and
(b) HA(M) is locally Fréchet whenever M is coadmissible.
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Proof. Part (a) is straightforward. For part (b), let U € X,,(7) and note that
HY;g(M) is the simultaneous kernel of the restriction maps M(U) — M(V)
as V ranges over all quasi-compact subsets of U such that VNS = (). These
restriction maps are continuous maps between Fréchet spaces by [4, Lemma 6.4.5].
It follows that HY (M) is a closed subspace of M(U), and therefore itself carries
a canonical Fréchet topology. We leave to the reader the task of verifying that the
G s-equivariant structure maps H%(M)(U) — HL(M)(gU) constructed in part (a)
are continuous for every g € Gg. Therefore the Gg-equivariant D-module H2 (M)
is locally Fréchet, by [4, Definition 3.6.1(a)]. O

Definition 2.1.7. Let S be a subset of X. Then Cf(/G denotes the full subcategory
of Cx,q consisting of those M € Cx,g such that M|y = 0 for every admissible
open subset V of X\S. We call objects M € C)S(/G coadmissible G-equivariant
D-modules on X supported on S.

Definition 2.1.8. Let G be a group acting on a set X and let Y be a subset of
X. We say that the G-orbit of Y is regular in X if distinct G-translates of YV are
disjoint: gY NY #0 = gY =Y forallgeG.

Lemma 2.1.9. Suppose that the G-orbit of Y is reqular in X and let H be a normal
subgroup of G. Then the G-orbit of HY is also regular in X, and Ggy = HGy .

Proof. Let g € G be such that gHY N HY # (). Then we can find h; € H and
y; € Y such that ghiy; = hoys, which implies gh1Y = hoY. Because H is normal,
we obtain gHY = gHhY = Hgh1Y = HhoY = HY.

For the second statement, we may assume that Y is non-empty. Let g € Gy
Then () # gY C UpeghY so gY NAY # () for some h € H. But then h~'g € Gy
as the G-orbit of Y is regular and hence g = h(h~'g) € HGy. On the other hand,
HGyHY:HGyY:HY shows that HGngHy O

To motivate the constructions that will follow, let us recall the following basic
Lemma about cohomology with supports.

Lemma 2.1.10. Let X be a topological space, and let {C1,...,Cy} be closed subsets
of X which admit pairwise disjoint open neighbourhoods {Uy,...,U,}. Then the
canonical map @, T'c, (X, F) — Tuc, (X, F) is an isomorphism for any abelian
sheaf F on X.

Proof. Consider the following commutative diagram with exact rows

0 ——Tyc, (UVU;, F) ——T(UU;, F) —— T (U(U\C;), F)

| l

The solid vertical arrows in this diagram are isomorphisms because the U; are
pairwise disjoint and because F is a sheaf. Therefore the induced dotted vertical
arrow on the left is an isomorphism by the Five Lemma. This map fits into the
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following commutative square:

Fuci (X? ]:) FUCi (UU’H]:)

! l

@Fci (Xa ]:) @FCI(UM}-)

whose horizontal maps are isomorphisms by the excision formula [I4, Proposition
1.3]. It follows that the vertical restriction map on the left that we are interested
in is also an isomorphism. ([l

We now return to rigid analytic geometry. Recall from [28] p.100] that associated
to every morphism g8 : X — Y of rigid analytic spaces there is a continuous map
Be + P(X) = P(Y) given by B.(p) = {admissible open V C Y : 371(V) € p}.
This map respects the maximal filters: 8. (p) € #(Y) for every p € #(X).

Lemma 2.1.11. Let X be a rigid analytic space and let 8 : Y — X be the inclusion
of a Zariski closed subspace. Define

Y ={ace#(X): X\Y ¢a} C #(X) and
Y = {pe 2(X): X\Y ¢ p} c 2(X).

Then
(a) 1Y) = Y,
(b) XY is a closed subset of 4 (X),
(¢) Y is the closure Y of Y in 2(X),
(@) B (Y) = Y,
() YNZ=YNZifZ is another Zariski closed subspace of X,
(f) gY = gY for any g € Aut(X).

Proof. (a) It follows from [28, Lemma 5.3] and [23, Proposition 3.3(iii)] that the
Zariski open subset X\'Y of X is wide open. Hence r~(X\Y) = ﬁ by [28,
Lemma 5.7]. Taking complements in 2(X) gives r~1(Y) =Y.

(b) Because r is a quotient map, it is enough to show that r=*(Y) is closed.
However, its complement in (X)) is the open set )a?, by (a).

(c) By definition, Y = W(X)\)a? Now X\Y is an admissible open subset of
X by [23], Proposition 3.3(iii)] so @(X)\)ﬁ =Y by Lemma 214

The remaining parts of the Lemma are straightforward. ]

We will henceforth identify .#(Y) with its image Y in .#(X). Lemma 2T.1T]
immediately implies the following

Corollary 2.1.12. Suppose that a group G acts on a qcgs rigid analytic space X by
automorphisms, and Y is a Zariski closed subspace of X whose G-orbit is reqular
in X. Then the G-orbit of Y is regular in .#(X).

Lemma 2.1.13. Let G be a topological group acting continuously on a rigid analytic
space X. Then the induced action map a: G x P(X) — P(X) is continuous.

Proof. Let U be an affinoid subdomain of X; then its stabiliser Gy in G is open
by [4, Deﬁniti~on 3.1.8]. Now if T is a set of right coset representatives for Gy in
G, then a1 (U) = [[,er Gut x t7'U is open in G x 2 (X). O
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Corollary 2.1.14. Let G be a topological group acting continuously on the rigid
analytic space X, and let Y be a Zariski closed subset of X. Suppose that A4 (X)
is Hausdorff and that Gy is co-compact. Then GY 'is closed in .4 (X) and GY is
closed in P (X).

Proof. Because r is surjective, it follows from Lemma 2T1T}a) that Y = r(Y).
Now GY is the image of the quasi-compact space G/Gy x Z(Y) under the map
r o a, which is continuous by Lemma ZT.13] It is therefore quasi-compact. Since
A (X) is Hausdorff, we see that GY is closed in .#(X). Hence GY = r~(QY) is
closed in Z(X). O

Remark 2.1.15. The hypothesis that .#(X) is Hausdorff is automatic in many cases
of interest, e.g. when X is quasi-compact, or more generally when X satisfies the
condition from [28 Proposition 5.4].

Corollary 2.1.16. With the notation of Corollary 2114, GY = GY.

Proof. Note that Y = Y by Lemma ZITIT(c). Since GY is closed by Corollary
2114 and contains GY, it also contains GY. On the other hand, GY is a G-stable
closed subset of &(X) containing Y, so it contains Y =Y as well as GY. O

Theorem 2.1.17. Let G be a topological group acting continuously on the gcgs
rigid analytic space X. Let Y1, ..., Y., be Zariski closed subsets of X such that
the sets GY1, ..., GY,, are pairwise disjoint and such that Gy, is co-compact
for each i. Then there exist pairwise disjoint open neighbourhoods of their closures

Proof. Each GY, is closed in .#(X) by Corollary [Z1.14] and Remark If
p € GY,; N GY; then there is some g € G such that p € ¥, NgY ;. But this
intersection equals Y; N ¢gY; by Lemma ZITI(d) and (e) which is empty unless
i = j by our assumption. So, the closed subsets GY, of .#(X) are pairwise disjoint.

Because . (X) is quasi-compact and Hausdorff, it is a normal topological space
by [0, Chapter I, §9.3, Proposition 2]. Hence we can find pairwise disjoint open
neighbourhoods V; of the GY,’s. Then U; := r~1(V;) is an open neighbourhood of
r~YGY,;) = Gr~'(X;) = GY; = GY; by Lemma ZI.IT and Corollary Z.I.16 and
the Uy, ..., Uy, are pairwise disjoint. O

2.2. Construction of the induction functor. Let G be a p-adic Lie group acting
continuously on a smooth rigid analytic space X, in the sense of [4, Definition 3.1.8],
and let B be a closed subgroup of G such that G/B is compact. Our goal here is
to construct an induction functor

1ndg :CX/B — Cx/G'
from B-equivariant coadmissible D-modules on X to G-equivariant ones. Our first
elementary topological Lemma explains how we use the compactness of G/B.
Lemma 2.2.1. Let H be an open subgroup of G. Then the set of double cosets
|H\G/B)| is finite.
Proof. The quotient map 7 : G — G/B is open because 7~ *(n(U)) = U - B =
Usep U is a union of B-translates of U whenever U is an open subset of G. Since

H is open in G, the open covering G = | J,e Hg of G maps to an open covering
Uyec Hn(g) of G/B which by the compactness of G//B has a finite subcovering.
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So the H-action on G/ B has finitely many orbits, and the preimages of these orbits
in G are precisely the H, B-double cosets in G. O

Recall from [4, Definition 3.4.6(a)] that X,,(7) denotes the set of affinoid sub-
domains U of X such that 7(U) admits a free .A-Lie lattice for some affine formal
model A in O(U). Recall also from [4] Definition 3.4.4] that the subgroup H of G
is U-small if the pair (U, H) is small, which in turns means that U is an affinoid
subdomain of X, H is a compact open subgroup of the stabiliser Gy of U in G, and
T(U) has an H-stable free A-Lie lattice £ for some H-stable affine formal model
A in O(U). Until the end of §2.21 we will fix the following data:

B is a closed subgroup of G such that G/B is compact,
N €Cx/p,

U e X(T),

H is a U-small compact open subgroup of G.

Whenever J is a subgroup of G and s € G, we will write *.J := sJs~! and
J* = s71Js. In [4 Lemma 3.4.3] we constructed a continuous isomorphism of
K-Fréchet algebras EElH : D(U, H) — D(s~'U, H*) induced by the action of s~
on X and the conjugation automorphism g — s~ 'gs of G. In view of [4, Theorem
3.3.12], this map restricts to an isomorphism D(U,*BNH) — D(s~'U, BN H?)
which we will simply denote by 5~!. Now B N H* stabilises s 'U, and in fact
it is an s~!U-small subgroup of B, so we see that A(s7'U) is a module over

5(5’1U, BN H?®) whenever N € Cx,p by [4, Theorem 4.4.3].

Definition 2.2.2. Let N € Cx/p and let H be a compact open subgroup of G.
Suppose that (U, H) is small and let s € G. Let [s] be a formal symbol and set

[sINV (s71U) == {[s]m : m € N(s~'U)}.
This becomes a module over D(U, *B N H) via the rule
a-[sjm:=[s]5 "(a)m forall a€D(U,°BNH) and meN(s 'U).
We call this 5(U, $B N H)-module the s-twist of N'(s~*U).
Lemma 2.2.3. [s]V(s7'U) is a coadmissible D(U, sBs~' N H)-module.

Proof. Because N € Cx,p, the ﬁ(s’lU, BN H?)-module N(s71U) is in fact coad-
missible, by [4, Theorem 4.4.3]. The result follows because 5! is an isomorphism
of D(U,*BN H) onto D(s~'U, BN H?®). O

Proposition 2.2.4. Every s € G defines a twisting functor Cx,p — Cx/sp given
by N [s]s.N.

Proof. Fix U € X, (7). Then ([s]s.N)(U) = [s]N(s7'U) is a coadmissible
f?\(U,sBs*1 N H)-module by Lemma [2.2.3] for any U-small open subgroup H of
G, and therefore in particular is naturally a D(U)-module, as well as a Fréchet
space. These structures do not depend on the choice of H, and [s]|s, N naturally
becomes a sheaf of D-modules on X,,(7). If ¢ € *B, then ¢® € B, so we have
at our disposal the morphism of sheaves (¢*)N : N' = (¢*)*N because N is a B-
equivariant sheaf. We define cl*15V : [s]s, N' = ¢*([s]s.N) by cl¥I5=N = [s]s, (¢*)V.
It is straightforward to verify that in this way [s]s./N becomes a ®B-equivariant D-
module on X. The maps cl*I*-V(U) : [s]N (s~ U) — [s]N (s~ cU) are continuous



188 KONSTANTIN ARDAKOV

because the maps (¢*)V (s~'U) : N(s~'U) — N (s~ 'cU) are continuous for each
¢ € *B. Finally, we omit the straightforward verification of the fact that the re-

striction of [s]s.A to U is naturally isomorphic to LOCD(U C)([S]J\/(s_lU)) as a
C-equivariant locally Fréchet D-module on U. Hence, [s ]s N is coadmissible. The
functorial nature of this construction is clear. |
Definition 2.2.5. We call the object [s]s,N € Cx/sp the s-twist of N € Cx/p.
Corollary 2.2.6. Let s € G. The s-twist functor sends objects supported onY to
objects supported on sY : [s]sy : CX/B — C;g/( sp-

Suppose (U, H) is small. It follows from Lemma 223 that we now have at our
disposal the coadmissible D(U, H)-module
M(U,H,s):=D(U,H) ® [s]N(s"'U).
D(U,* BNH)

We will show that in a precise sense, M (U, H, s) only depends on the double coset
HsB containing s. Let Z € H\G/B be an H, B-double coset; we regard it as a
category as follows. The objects of this category are the elements of Z; for two
elements s,t € Z, the set of morphisms Z(s,t) in this category is defined by

Z(s,t) :=={(h,b) € Hx B : hsb™* =1t}
and the composition of arrows maps Z(t,u) X Z(s,t) — Z(s,u) is obtained by
restricting the group operation in H x B. Note that each double coset Z € H\G/B
becomes a groupoid in this way.

Recall from [4] §3.3] that D(U, H) is a certain Fréchet-completion of the skew-
group algebra D(U) x H. Therefore 6(U7 H) contains a canonical copy of the group
H, and we have a canonical embedding of groups v : H — 6(U, H)*, identifying
H with this copy. See [4, §3.3] for more details.

Proposition 2.2.7. Let Z € H\G/B. The rule s — M (U, H, s) defines a functor
M(U,H,—): Z—>CD(U )

Proof. Let s,t € Z and (h,b) € Z(s,t), so that s = h~'th. We have to define a
D(U, H)-linear map n{{hb) : M(U,H,s) — M(U, H,t). We define this map

(1) nfl,:DUH) & [sN(T'U)—DUH) _ & [HN(E'U)
D(U, BNH) D(U,tBNH)

as follows: given a € D(U, H) and m € N'(s~'U), we set
M) (aBslm) = ay(h) ' [6N (m).
To check that this is well-defined, because
azx@[slm = a®z - [sjm = a®[s]s~1(x) - m
holds whenever z € D(U,*B N H), we must show that
(2) azy() "B (m) = ay(h) B[V (s (2) - m)
holds whenever z € D(U,*B N H). Now aw(h) L=(h)~ 1/f;(x) implies that
azy(h) BN (m) = ay(h) ' ®h(x) - [t (m)
= ay(h) "B (h(@))b (m).
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We know that t~1h = bs~! since (h,b) € Z(s,t), so
o1

=1 ()0 (m) = (s~ 1 (2)) -5 (m) = y(b)s—(@)3(B) -6V (m) = ¥V (51 (2) - m)

and equation (2) follows. Thus n{}l_ py is a well-defined 5(U, H)-linear map, and the

verification that n' respects composition in the category Z is straightforward. O

Definition 2.2.8.
(a) For each Z € H\G/B, we define M (U, H, Z) to be the inverse limit

M(U, H,Z) = lim M(U, H, 5)
seZ

of the functor M(U,H,—) : Z — CB(U7H) from Proposition 22,7

(b) We define M(U, H) := @zcpe/p M(U, H, Z).
Corollary 2.2.9. Let Z € H\G/B.
(a) The inverse limit M(U,H,Z) exists, and for any s € Z the canonical
projection map M(U,H,Z) — M(U, H, s) is an isomorphism in Cﬁ(
(b) M(U, H) is a coadmissible D(U, H)-module.

U,H)"

Proof. (a) The double coset Z is naturally a groupoid, that is, a small category
where every morphism is invertible. So, the arrow ngl b) from () is automatically

invertible, with inverse 77{2,1 b-1)- Therefore for any choice of element z € Z,
the coadmissible D(U, H)-module M (U, H, z) is isomorphic to the inverse limit of
the functor s — M (U, H, s), which shows the existence of the inverse limit. The

statement about the projection maps is now clear.
(b) Use part (a) together with Lemma 2211 O

Using the above language, we can now establish an analogue of Mackey’s Theo-
rem concerning the restrictions to D(X, H) of modules induced up to D(X, G).

Proposition 2.2.10. Suppose that (X, G) is small and U = X. Then there is a

—_

D(X, H)-module isomorphism

P MXHZ SDXG & NX)
ZcH\G/B D(X,B)

which is functorial in N € Cx/p.

Proof. We begin by observing that it follows from [4, Definition 3.4.9(a) and Propo-
sition 3.4.10] that the canonical map D(X, H) @K[H] K[G] — D(X, Q) is an iso-
morphism. Consider the D(X, H) — ﬁ(X, B)-bimodule decomposition

(3) DX.G)= P DX HNZ)DX, B).
ZeH\G/B

Fix Z € H\G/B and s € Z. If u € D(X,B N H*) then 5(u) € D(X,*BNH) C
D(X, H), s0 ay(s)ur(b) = as(u)1(s)1(b) € DX, H)y(s)y(b) for any a € DX, H)
and b € B. Since G is compact and B is closed in G, the open subgroup BN H*
of B has finite index in B. We can now see that if T is a (finite) set of right coset
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representatives for B N H® in B, then there is an isomorphism of left 5(X,H )-
modules _ _ _
D(X, H)1(s)D(X, B) = D D(X, H)v(s)7(b).
beT
Now let a € D(X, H),b € T and m € N(X). We omit the verification of the fact
that a®[s|m — avy(s)@m defines a D(X, H)-linear isomorphism

o

4) ¢ DX, H) _ 8 [(INX)—=DX,Hn(s)DX,B) & N(X)

o~

D(X,*BNH) D(X,B)
whose inverse is given by ay(s)y(b)@m — a®|s]y(b) - m. Recalling the maps n{,lhb)
from (), we have ¢; o ngl b = ¥s Whenever s,t € Z and (h,b) € Z(s,t). Since
13(X, H)fy(s)ﬁ(X7 B) evidently only depends on the double coset Z, passing to the
limit over all s € Z we obtain a left D(X, H)-module isomorphism

(5) ImDX,H) & [sW(X) DX HW(Z)DX,B)_& N(X).
s€Z D(X,*BNH) D(X,B)

The result follows from (@) and (§) because N (s71X) = N(X) for all s € G. O
We now use Proposition 22210 to establish the following important fact.

Proposition 2.2.11. Let H < J be U-small subgroups of G. Then there is a
canonical D(U, H)-linear isomorphism o, : M (U, H) — M (U, J).

Proof. Fix Z € J\G/B and s € Z, and write C' := *BN.J. Let N denote the restric-
tion to U of the s-twist [s]s.N. Then N, € Cy,c by Proposition 224 Applying
Proposition Z2ZT0 to (U, J) and Ny € Cy,c gives a D(U, H)-linear isomorphism
or: P ImDUH)_ & [N(y'0) DU B N(U).
YeH\J/CVYEY D(U,YCNH) D(U,C)

However VCNH =Y(*BNJ)NH =Y*BNYJNH =Y*BNH sincey € J 2O H, and
the D(U,YC N H)-module [y]N;(y~'U) is simply [ys]N (s~1U), so we may rewrite
g as follows:

(6) a: P @gﬁﬂtnﬂgw)fiﬂiaLLs)
YeH\J/sBnJYEY

Now suppose that t is some other member of the double coset Z. Then t = jsb™!
for some j € J,b € B. Because ‘BN .J =7 BN J, the rule Y + Y ! defines a
bijection H\J/*BNJ — H\J/'!BNJ. As y runs over elements of Y, w := yj !
runs over elements of W := Yj~!; since wt = ysb~!, we have the isomorphism
ngb) : M(U,H,ys) - M(U, H,wt) from the proof of Proposition [Z2Z71 The
direct sum of these isomorphisms gives the vertical arrow on the left in the following
commutative diagram:

lim M(U, H,ys) ——> M(U, J, s)
YEH\J/*BNJ yey

J
l (5,6

lim M (U, H,wt) —— M (U, J, ).
WEeHNT/tBAJT wew i
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The map 6 : H\G/B — J\G/B given by W +— JW is surjective because H <
J, and the function H\J/*BNJ — 671(Z) = H\Z/B given by Y ~ YsB
is a bijection. Because Y's is a subgroupoid of YsB, there is a ﬁ(U,H)—linear
isomorphism l.&ner M(U, H,ys) = M(U, H,Y sB). Passing to the limit over all

s € Z in the above commutative diagram we obtain a 5(U, H)-linear isomorphism

az: @ M(UHV)-= M(U,JZ).
Veo-1(z)

Finally, by definition we have the direct sum decompositions
- B P MUHV) and MU, J)= @ M(U,J 2).
ZeJ\G/BVeo-1(2) ZeJ\G/B
Taking the direct sum of these az over all Z € J\G/B produces the required
D(U, H)-linear isomorphism M (U, H) — M(U,J). O
Using the connecting maps constructed in Proposition 2.22.11] we can form the
inverse limit l'ng M(U, H).
Definition 2.2.12. Let N € Cx,p and let U € X,,(7T). We define
ind§(NV)(U) := L P 1imD( mD(U,H) ® [JN(sU),
H zcH\G/BSs€Z D(U,* BNH)
where the first limit runs over all U-small compact open subgroups H of G.

For brevity, we will write M to mean ind%(A\) until the end of §231

Corollary 2.2.13. The canonical maps M(U) — M (U, H) are bijections for any
U-small compact open subgroup H of G.

Proof. This follows immediately from Proposition 222111 O
Our next goal is to define the restriction maps M(U) — M (V).

Lemma 2.2.14. Let V be an H-stable affinoid subdomain of U and let s € G.

(a) There is a D(U, H)-linear map 2 (H,s): M(U,H,s) — M(V,H,s).
(b) If W C V is another H-stable affinoid subdomain, then

T\I,JV(H,S) = T\\;\//(H,S) o T\I/J(H, s).

(¢c) For every h € H and b € B there is a commutative diagram

H
M(U,H,s) —"" _ N(U, H, hsb™)
T\‘,J(H,s)l ng(H,hsbl)
M(V,H,s) —_— M(V,H, hsb™1).
()

Proof. Let the restriction maps D(U, H) — D(V, H) and N (s~1U) = N(s~1V)
be denoted by a — ajyv and m — ms-1y. Then we set

v (H, s)(a®[s]m) := ajy@[s]ms-1v.
This is well-defined and satisfies all of the properties stated in the Lemma. O
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Corollary 2.2.15. With the notation of Lemma 22214, there is a 5(U, H)-linear
map 75 (H) : M(U,H) — M(V,H) such that 7 (H) = 7y (H) o 73 (H).

Proof. Define 737 (H) = @ zema/n lim 3 (H,s) and apply Lemma 2214 O

Definition 2.2.16. We define 75 : M(U) — M(V) to be the inverse limit of the

G (H) as H runs over all U-small and V-small compact open subgroups of G.

From Corollary 2.2.T5 we immediately deduce the following statement.

Corollary 2.2.17. M becomes a presheaf of D-modules on X,,(T) when equipped

with the restriction maps T .

Next, we explain how to define the structure of a G-equivariant D-module
presheaf on M. We omit some straightforward proofs.

Lemma 2.2.18. For every g,s € G there is a continuous K -linear isomorphism
¢H(gas) : M(U,H,S) - M(gU,gvaS)a

Belm = Ga)Blgsim
satisfying the following properties:
(a) du(g,s)(a-b)=4g(a)- ¢u(b,s) for alla € 5(U,H) andbe M(U,H,s),
(b) ¢u(g,9s) 0 ¢u(h,s) = ¢ulgh,s) for all g,h € G, and
(c) ¢ulg,hsdb™")onff ) = n?ﬁ,b) o du(g,s) for all (h,b) € H x B.
Note that there is a bijection H\G/B — 9H\G/B given by Z — gZ.

Lemma 2.2.19. For every g € G there is a continuous K-linear isomorphism
ou(9) = @ lmonlg,s): M(U,H) » M(gU, H)
ZeH\G/Bs€Z
satisfying the following properties:
(a) ¢om(g)(a-b) =9(a)- du(b) for alla € 5(U,H) and b e M(U,H) and
(b) ¢u(g) o ¢r(h) = du(gh) for all g.h € G.
Corollary 2.2.20. M is a G-equivariant presheaf of D-modules on X, (T).

Proof. In view of Corollary 22217 and [4, Definition 2.3.4(a)], we have to define a
K-linear morphism g™ : M — g* M of presheaves on X,,(7) for each g € G, such
that g™ (a-u) = gP(a)-g™(u) for all a € D and u € M and g™ o hM = (gh)M for
all g,h € G. Now, let H < J be U-small compact open subgroups of G; we claim
that if af; denotes the isomorphism from Proposition 22211} then we have

(7) bs(g) 0t = astogu(g) forall geG.

Let s € G and recall the map «a; from (B). Consider the restriction of oy to the
direct summand M (U, H, s) of its domain; then using Corollary 2ZZ0(a), we see
that the above equality follows from the commutativity of the following diagram:

Qs

M(U, H,s)

M(U, J, s)
(bH(grs)l l/(b.](gvs)
M(gU,H, gs) ———— M(gU,?J, gs).
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To check this commutativity, we use the following diagram of Fréchet K-algebras:

D(U, H) D(U,J)

gU,Hl lgu,.i

D(gU,gHg ") —————D(gU,gJg ")

which is easily seen to be commutative; see also the proof of [4, Proposition 3.5.7(b)].

Having verified the equality (), we can now define g™ := limy ¢5(g) and use
Lemma [2.2.T9] to conclude. ]

2.3. Properties of the induction functor. We continue with the notation and
hypotheses of §22t thus, G is a p-adic Lie group acting continuously on the smooth
rigid analytic space X, B is a co-compact closed subgroup of G and N is an object
in Cx,p. We continue to abbreviate M := ind% ().

Proposition 2.3.1. Suppose that (U, J) is small. Then there is an isomorphism
Y PS(U’J) (M(U)) = My, of J-equivariant presheaves of D-modules on Uy,.

Proof. The D(U,J)-module M(U) is coadmissible by Corollaries ZZZ0(b) and
2213 so we may form presheaf P := PS(U’J) (M(U)) on U, from [, Definition
3.5.3]. Let V € Uy, fix a V-small open subgroup H of J and let s € G. Recall from
Proposition 224 that [s]s,N € Cx = p. Because the pair (s~'U, BN H*) is small,
it follows from [4, Theorem B]| that there is a D(V,*BNH )-module isomorphism
D(V,°BNH) & [sIN(s'U) = [s]N(s71V).
D(U,* BNH)
We apply the functor D(V, H) ®5(V’SBOH)

ciativity isomorphism for ® from [B, Corollary 7.4] and chasing the definitions, we

— to this isomorphism. Using the asso-

deduce from this a 5(V, H)-linear isomorphism
D(V,H) ® M(U,H,s)— M(V,H,s).
D(U,H)
Take the direct sum over all Z € H\G/B of the inverse limits over all s € Z of these
isomorphisms, and use Definition [ZZ8 to obtain a D(V, H)-linear isomorphism
og:D(V,H) ® M(U,H)— M(V, H).
D(U,H)

Now we define (V) : P(V) — M(V) to be the unique dotted arrow which makes
the following diagram commutative:

P(V) o Y > M(V)
D(V, )35 gy M(U) —— D(V, H)®5 g7 M(U, H) —— = M(V,H).

Here the vertical isomorphism on the left comes from [4, Corollary 3.5.6], and the
other two unlabelled isomorphisms come from Corollary 22213 We will show that
©(V) does not depend on the choice of H. To this end, choose another V-small
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open subgroup H’ of J; by considering the pairs H " H < H and H N H < H'
separately, we may assume that H' < H. The independence on H boils down to
showing that the following diagram is commutative:

PH

D(V,H) O v.py MU H) —3 M(V,H')
@aﬁ’(U)l adf' (V)
D(V, H) ®6(U,H> M (U, H) — M(V, H),

where ol (V) and agl (U) are instances of the isomorphisms from Proposition
2211 Fix a double coset Z' € H'\G/B, let Z := H - Z' denote its image in
H\G/B, and let s € Z’. Then the commutativity of this diagram follows in turn
from the commutativity of following diagram, whose horizontal maps are induced by
restr/igtions in the sheaf A/, and whose vertical maps are induced by the functoriality
of —®—:

D(V,H @5 . SNV (710) D(V,H @5 . g BN (71V)
D(V, H)®5 1 g SV (571 0) D(V, H)® 50« o SV (s V).

The commutativity of this diagram is clear, so (V) is indeed independent of H.
It remains to show that ¢ : P — M commutes with the restriction maps in the
presheaves P and M, and that it also commutes with the J-equivariant structures
on these presheaves; these verifications are performed in a similar way to the above
and are left to the reader. (]

Corollary 2.3.2. M is a sheaf of D-modules on X,,(T).
Proof. Apply Proposition 23] and [4, Theorem 3.5.11]. O

Recall that because X is assumed to be smooth, X,,(7) is a basis for the strong
G-topology X,ig on X. It follows from Corollary and [3, Theorem 9.1] that
M extends uniquely to a G-equivariant sheaf indg (N) of D-modules on X,ig. In
fact, it is easy to see that it is a G-equivariant locally Fréchet D-module on X, in
the sense of [4, Definition 3.6.1].

Definition 2.3.3. We call ind%(N) the induced G-equivariant D-module.

Theorem 2.3.4. For every N € Cx/B, the induced G-equivariant D-module
ind%(N) is coadmissible: ind§(N) e Cx/c-

Proof. Choose any X,,(7T)-covering U of X, fix U € U and choose a U-small sub-
group J of G using [4, Lemma 3.4.7]. Using [3, Theorem 9.1], we see that the

isomorphism ¢ : PS(U’J) (M(U)) = My, of J-equivariant presheaves of D-

modules on U, from Proposition 2.3.T] extends uniquely to a continuous isomor-

phism Locg(U’J) (M(U)) = ind§ (M)ju,,, of J-equivariant D-modules on Upg. It
follows from [4, Lemma 3.6.5] that this isomorphism is continuous, so we see that
ind% (N) is U-coadmissible in the sense of [4, Definition 3.6.7(a)]. O
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We have the following observation about supports.

Lemma 2.3.5. indg defines a functor C;({/B — C)G(?(G.

Proof. By Theorem 2.3.4] ind%(N) e Cx /¢ whenever N' € Cx/p. On the other

hand, it follows from Definition 22212 that ind%(A)(U) is zero for any U € X, (7)
such that UN GY = () whenever N is supported on Y only. O

Lemma 2.3.6. If (X, G) is small, there is a canonical D(X, G)-linear isomorphism

I(X,indF(N) — D(X,G) & N(X).
D(X,B)

Proof. Because X € X,,(T), the map M(X) — I'(X,ind%(N\)) is an isomorphism
by Corollary Now apply Corollary with U= X and H = G. O

Fix an open subgroup H of G. Using Lemma 2.2.T] we can find a finite set of
representatives {s; = 1,...,8,,} for the H, B-double cosets in G. Recall the s;-
twist [s;]s; N of N from Definition ZZZ7} this is an object of Cx /s g by Proposition
224 and we define N := Resy5e, 5 [si]si+N to be its restriction to H N % B.

We have the following sheaf-theoretic version of Mackey’s restriction theorem.

Lemma 2.3.7. Suppose U is an affinoid subdomain of X such that (U, H) is small.
Then indg(/\/’)‘U =~ @it indgnsiB(/\/ﬂU) in Cu/g-

Proof. By Theorem 2341 and [4, Proposition 3.6.10], both sheaves do lie in Cy, .
Because (U, H) is small, it follows from Lemma [Z36] that I'(U, indgnsiB(/\/i\U)) =
ﬁ(U7 H) ®5(U.Hﬁsi3) N;(U). Applying Corollary and Definition 2212 we

see that T'(U,ind$(N)) is isomorphic to &7, ['(U,ind ., 5(N;)) as a D(U, H)-
module. The result now follows from [4, Theorem 4.4.3]. O

Now we specialise to the case B = Gy, and define M; := indgmsiB(N}).

Lemma 2.3.8. Suppose that the G-orbit of Y is regular in X and that N € C)%/GY'
Then Hysy (Mi) = M; and Hiy, v (M) =0 if j #i.

Proof. By Corollary 2Z.2.6] we know that Supp(./\~/;) C s,Y. Hence Supp(/\;li) C
Hs;Y for each i by Lemma 23] so HY, v(M;) = M;.

Now, the sets Hs; Y are pairwise disjoint: if hs;y = h's;y’ for some h,h' € H
and y,y’ €Y then (hs;)"!(h'sj) € Gy because the G-orbit of Y is regular in X,
so Hs;Gy = Hs;jGy and hence i = j by our choice of the s;’s. It follows from
Lemma [ZTIT)(d) that the sets Hs;Y are pairwise disjoint, so we can find pairwise
disjoint open neighbourhoods U; of these sets in &(X) by Theorem 2117 Now
if j # 4 then ./\;l”Uj = 0 because Supp(M;) C Hs;Y and Hs;Y NU; = 0 if j # i.
Hence H?{sjY(Mi) = 0 whenever j # i. O

Proposition 2.3.9. Suppose that the G-orbit of Y is reqular in X and that N €
C;({/GY. Suppose that (U, H) is small. Then there is an isomorphism in Cx /g
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Proof. By Lemma 2.3.7], inde (M)u is isomorphic to @i~ ind% ., oy Niju) in
Cu/u- Now N € CX/Hﬁ .y Py Corollary Z2.6] so Njju € C;){;rg Gy Hence

M = 1ndes7¢GY Niju) € CU/‘;YOU by Lemma 2351 Because the H(szY NnU)
are pairwise disjoint, a similar argument to the proof of Lemma [2.3.8 shows that

H%(siYmU) (M) = M} and HH(S yru) (M) = 0 whenever j # i. Hence

Hr (o ¥nU) (indGy, (NV)ju) = M} = indfjne oy Nijw)

for each 7, and the result follows by considering the case i = 1. (Il

2.4. Structure of ind%(N) and C)C(;?(G on small affinoids. Throughout §2.4 we
assume that (X, G) is small. We continue to assume that B is a closed subgroup of
G and that N € Cx,p; note that this automatically implies that G//B is compact
because G is itself compact.

Because (X, @) is small by assumption, we can find a G-stable affine formal
model A in O(X) and a G-stable free A-Lie lattice £ in 7 (X). Using [4, Corollary
3.3.7], we fix a good chain (H,) for L; recall from [4] Definitions 3.2.11 and 3.3.3]
that this means that Hy > H; > --- is a descending chain of open normal subgroups
of G with trivial intersection, such that p(H,) < exp(p¢n™L) for all n > 0, where
p: G = Autg (O(X)) is the action of G on O(X).

Lemma 2.4.1. Let N be a coadmissible 13(X, B)-module. Then the canonical map

N — N2, D(X, H,B) ®=

BX.B) N is bijective.

Proof. Let D, :==U (7T/”\£) K, write B, := BN H, and consider the following com-
mutative diagram:

N lim(Dy x B) @ N
# D(X,B)

@(Dk X HkB) ® N
k Hi, D(X,B)

lim lim (D H,B N
;nn%;( k;k )6(;6?3)

@D(X,HnB)@ s N lim Jim (D, X H,B) ® N.
n n kxn k D(X,B)

The map we wish to show is an isomorphism is the long vertical arrow on the

left. The top horizontal arrow is an isomorphism because N € CB(X B) by as-

sumption, and because im Dy xp, B = D(X, B) by [, Lemma 3.3.4]. The first
vertical arrow on the right is induced by the isomorphism B/Bjy = HyB/Hj. The
second vertical arrow on the right is an isomorphism because for any fixed k£ we
have N*_ H, B = H,B. The third vertical arrow on the right is the isomorphism
obtained by interchanging the order of inverse limits. Finally, for each fixed n,
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—_

D(X, H, B) is isomorphic to Wm, Dy >, HnB again by [4, Lemma 3.3.4]. The

definition of ® given in [B, §7.3] now implies that the bottom horizontal arrow is
an isomorphism. O

Proposition 2.4.2. There is a continuous D(X) X B-linear isomorphism
ot Hy(M) = lim Hpy v (M)
for every G-equivariant locally Fréchet D-module M on X.

Proof. First, we claim that (,—, H,Y = Y. Suppose for a contradiction that
pE (ﬂffzo H,ﬂ?) \'Y. Because Y is closed in 2 (X) we can find U € X,, such that

peUand UNY = 0. Since G acts continuously on X, Gy is an open subgroup
of G and therefore must contain one of the H,,’s because (,—; Hy is trivial and G
is compact. Since p € HnY~', we can find some h € H,, such that h=1p € Y. But
then h~1p e UNY = 0, a contradiction. Next, in the commutative diagram

0 M(Z(X)\Y)

M(X)

Hy (M)

Y

0 —— lim HY, (M) —> M(X) —> lim M(P(X)\H,¥)

the rightmost vertical arrow is a bijection because M is a sheaf and because the
complements of the closed sets H, Y form an open covering of the complement of
Y. Therefore « is bijective by the Five Lemma. Now each H,Y is B-stable because
H,, is normal in G. The continuity and D(X) x B-linearity of a now follow from
Lemma O

Lemma 2.4.3. Suppose that the G-orbit of Y is reqular in X and that N € C;((/Gy.
Let H be an open subgroup of G. Then the natural isomorphism from Lemma [2.3.0]

identifies ]-Iloﬂf—(indgY (V) with D(X, HGy) @5()( ) N(X).

Proof. By Proposition 2.3.9 applied to U = X, we know that H%Y(inde (N)) =
indgﬂGY Resg}ﬂGY N in Cx /- Taking global sections and applying Lemma [2.3.6]

gives a i)\(X, H)-linear isomorphism

HYy(indg, W) =2D(X,H) &  N(X).
D(X,HNGv)

The result now follows from the isomorphism (@). O

We can now state and prove the first important result of §2.41

Theorem 2.4.4. If the G-orbit of Y is reqular in X and N € C;({/Gy, then there
is a natural D(X, Gy )-linear isomorphism N'(X) —» HY (indg (V).
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Proof. Consider the following commutative square:

N(X) ﬁo DX, HGy) 85 ¢y NX)
HY (indG, () 1, Hiry (G, (V).

Because N € Cx /¢y, we know that N(X) is a coadmissible ﬁ(X, Gv)-module by
[4, Theorem 4.4.3]. Hence the top horizontal arrow is an isomorphism by Lemma
24Tl The vertical arrow on the right is an isomorphism by Lemma 243l Now
indgY (N) € Cx/¢ by Theorem 234, so the bottom horizontal arrow is an iso-
morphism by Proposition Therefore the vertical arrow on the left is also an
isomorphism as required. ([l

Next, we begin our study of the objects of C)Cé}'G.

Theorem 2.4.5. Let M € C)(EYG’ suppose that the G-orbit of Y is reqular in X
and let H be an open normal subgroup of G. Then the natural K|G]-linear map
¢:K[G] ® Hjy(M)— M(X)
K[HGv]

is an isomorphism.

Proof. By [4, Proposition 2.3.5], M(X) is a K[G]-module and H%~ (M) is a
K[HGvy]-submodule because HY is an HGy-stable subset of X. The map ¢
is given by (g ® m) = g™ (X)(m) for all g € G and m € HY (M).

Choose g1, ..., gm € G such that G =[]/~ iHGy. Then ¢(g; ® HYv(M)) =
gM(X) (HYyy (M) = H) vy (M) and we have to show that the direct sum of these
subspaces of M(X) equals M(X). Since M is supported on GY, we know that
Supp(M) C GY by Lemma 212 so the restriction of M to the complement of
GY is zero. Because GY = GY by Corollary it follows from Definition Z.1.3]
that Hy (M) = Hg:{((/\;l) = M(2(X)) = M(X). Now GY is the union of the
g;HY, and these are pairwise disjoint by Lemma Hence, the closures g; HY
in Z(X) of the g;HY admit pairwise disjoint open neighbourhoods by Theorem
2117 Tt follows from Lemma that the canonical map HY vy (M) @ - &
HY) 1y (M) — Hg (M) is an isomorphism. O

Corollary 2.4.6. With the notation of Theorem [2.4.5],
(a) HY (M) is a coadmissible D(X, HGy )-module, and
(b) the natural D(X, G)-linear map D(X, Q) BB, HG) HY v (M) — M(X)
is an isomorphism.

Proof. (a) By [4, Theorem 4.4.3], M(X) is a coadmissible 5(X,G)—module. Be-
cause HGy is open in G and G is compact, HGvy has finite index in G so M(X) is
also a coadmissible D(X, HGy )-module. HY% (M) is a D(X) x HGy-submodule
of M(X) by Theorem Now HY%+ (M) is closed in M(X) by Lemma 216
soitisa 5(X, HGvy)-submodule because D(X) x HGy is dense in 5(X, HGvy) by
construction.
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Because H is normal in G, gH %~ (M) is a ﬁ(X, H)-submodule of M(X) for each
g € G. By Theorem 245 M(X) is a finite direct sum of such submodules. We see
that HY%~ (M) is in fact a direct summand of M(X) as a D(X, H)-module, and is

hence coadmissible. It is therefore per force coadmissible as a 73(X, HGy)-module.
(b) The proof of [4, Proposition 3.4.10(a)] shows that the natural map

(8) K[G] ® D(X,HGy)— D(X,G)
K[HGvy]
is an isomorphism of K|[G] — D(X, HGy)-bimodules. Now apply part (a). O

Our next result forms the technical heart of the proof of Theorem [Al

Theorem 2.4.7. Suppose that (X, G) is small. Let Y be a Zariski closed subset of
X whose G-orbit is reqular in X, and let M € C)Cé}'G Then
(a) HY (M) is a coadmissible 5(X,Gy)—module, and
(b) there is a natural D(X, G)-module isomorphism
DX,G) & HY(M) = M(X)
D(X,Gv)
which is functorial in M.

We now start working towards the proof of Theorem 2.4.71 We assume that the
G-orbit of Y is regular in X and fix an object M € C)GJ(G until the end of §2.41
Recall that above we have chosen a G-stable affine formal model A in O(X), a
G-stable free A-Lie lattice £ in T(X) and a good chain (H,) for L.

Notation 2.4.8. Let n > 0. We set

(a) B —GY and G,, := BH,,,

(b) M := M(X) and M(n) := Hjy v (M),
(c) A:= D(X G) and A(n) := (X Gr).
(d) R —U(W"E)K xp, Gn and R := @R

We now need some preliminary Lemmas.

Lemma 2.4.9. The natural A(n)-linear map 0, : A(n) @a(n41) M(n+1) = M(n)
is an isomorphism for each n = 0.

Proof. Because H,11Y C H,Y, we have M(n + 1) C M(n) C M. Consider the
following commutative diagram:

A ®)<A(n) & M(n+1)) B A ® M(n)

A(n A(n+1) A(n)
A ® M(n+1) M.
A(n+1)

The bottom horizontal arrow and the vertical arrow on the right are isomorphisms
by Corollary Hence 1 ® 6,, is an isomorphism. Now (B)) implies that A
is a free, and hence faithfully flat, right A(n)-module. Therefore 6,, is also an
isomorphism. O
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Lemma 2.4.10. There is an isomorphism D(X, B) =R

Proof. Because B/BNH,, = G,,/H,, there are isomorphisms of K-Banach algebras
U(?z\ﬁ)K X pnH, B 2 R,, compatible with variation in n. Since (BN H,) is a good
chain for £ in B, it follows from [4, Lemma 3.3.4] that there is an isomorphism
ZA?(X, B) = Y&lU(/w-l\L)K X pnH, B. Hence ﬁ(X, B) = Im R, as claimed. O

Definition 2.4.11. N,, := R, ® 4(n) M (n) for each n > 0, and N := 1'£1N
Lemma 2.4.12. N is a coadmissible R-module.

Proof. Note that N, is a finitely generated R,-module because M(n) = H}; (M)
is a coadmissible A(n)-module by Corollary The inclusion M(n+1) C M(n)
together with functoriality induces a connecting R, i1-linear map N,4+1 — N,.
This gives an R,-linear map v, : R, ®g_., Np+1 — N, which features in the
following commutative diagram:

n+1

Ry ® Nyyy———R, @ (Rn+1 ® M(n+1))
Ryt Ry A(n+1)
Un o~
A(n+1)

R, ® A ® Mm+1
A(n) 1®6n A(n)< (n)A(nJrl) (n )>

Here 0, : A(n) ®a(n41) M(n + 1) =5 M(n) is the A(n)-linear isomorphism from
Lemma 249 Hence 1), is an isomorphism and N is a coadmissible R-module. [

Lemma 2.4.13. The natural map 3 : I&HM(TL) — Im Ny, is a continuous D(X, B)-
linear isomorphism.

Proof. For each m > n > 0 we define A(n), = U(@)K X, Gpn so that
Jm on A(n)m = A(n) for each n > 0. Because M(n) is a coadmissible A(n)-
module by Corollary m we have an isomorphism

= lim A(n)m @ M(n)

m>n

of A(n)-modules. The canonical maps R-linear maps M (n) — Ny =R, ®a(n) M(n)
that send v € N, to 1®v € Ry, @ g(ny) M (n) induce an R-linear map S : I&nM( n) —
l&an, appearing in the following commutative diagram:

l'monlu l
Hm lim A(n), ® M(n) m lim A(n), ® M(n).

m n<m A(n)
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The bottom horizontal arrow is the isomorphism coming from swapping the order
of limits, and the vertical arrow on the right is an isomorphism because for m
fixed, the partially ordered set {0 < n < m} has n = m as its largest member
and A(m),, = R,,. We conclude that § is an R-linear bijection. It is continuous
because each of the maps M (n) — N,, is continuous. O

Proof of Theorem 241 Note that N = @Nn is a coadmissible R-module by

Lemma[Z4T2] so N is a coadmissible 5(X, B)-module by Lemma 2410l Consider
the following commutative triangle:

HY (M) ° lim M (n)

\ /
@Nn.

The maps « and 3 are continuous D(X) x B-linear bijections by Proposition [Z4.2]
and Lemma [Z4.13] respectively. Thus, v is a continuous bijection between two
Fréchet spaces, so v~ ! is also a continuous bijection by the Open Mapping Theorem
[24, Proposition 8.6]. It now follows from [4, Lemma 4.4.4] that HY (M) is a
coadmissible D(X, B)-module and that v is a D(X, B)-linear isomorphism.
The definitions given in [3 §7.3] imply that there is an isomorphism
ADN=2lmA® N, ZlimA @ M(n).
R = R Y A(n) ()
But A ®g¢ny) M(n) is isomorphic to M = M(X) by Theorem 243 for all n > 0.
Thus, the natural A-linear map A®@p N —» M is an isomorphism. O

2.5. Proof of the induction equivalence. We can now start working on the
proof of Theorem [Al We will assume throughout §2.5] that:

e X is a smooth rigid analytic space,

e (G is a p-adic Lie group acting continuously on X,

e Y is a Zariski closed subset of X whose stabiliser Gy is co-compact in G.
Our first aim will be to show that H$ (M) € Cx /g, Whenever M € Cg}% and the
G-orbit of Y is regular in X. Recall from Lemma 22Tl that the set of double cosets
J\G/Gvy is finite whenever J is an open subgroup of G.

Lemma 2.5.T] involves the following notation:

JsYNU):=J-(sYNU)={ju:jeJuecsYnuU}.

Lemma 2.5.1. Let M € C)GJ(G and suppose that the G-orbit of Y is reqular in

X. Let (U,J) be small and let sy, ..., s, be representatives for the J, Gy -double
cosets in G. Then

(a) GYNU = J(s;YNU)U---UJ(s, Y NT),

(b) there is an isomorphism of locally Fréchet J-equivariant D-modules on U

MIU = @ H?I(s,;YﬂU) (MIU)v

i=1

(c) H(}(Syva) (M) € Cijj(;]YnU) for all s € G.
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Proof. (a) This is clear. (b) Since M is supported on GY, its restriction to U
is supported on GY N U. Because the G-orbit of Y is regular in X, the J-orbit
of sY NU is regular in U for any s € G, and J(s5;,Y NU)NJ(s;YNU) = 0 if
1 # j. Applying Theorem Z.T.17 and Lemma ZT.10 to the Zariski closed subsets
$1YNU, ..., s,YNU of U and the compact group J, we obtain a D(U) x J-linear
isomorphism

9) M(U) =5 HEyru(Mp) — EBHJ(S you (Mu).

i=1

In a similar manner, using Lemma [2.1.6] we obtain a direct sum decomposition

o o

(10) My — HGYmU(M\U —*EBHJ(S vauyMu)

i=1

of J-equivariant locally Fréchet D-modules on U.

(¢) Lemma implies that the direct summands of the D(U) x J-module
M(U) appearing in equation (@) are closed. Since M(U) is a coadmissible D(U, J)-
module, they must be coadmissible 73(U7 J)-submodules of M(U). Because the
functor I'(U, —) sends ([IQ) to (@), [4, Theorem 3.6.11] implies that the correspond-
ing finitely many direct summands M,y appearing in equation (I0) all lie in Cy ;.

Finally, J(sY NU) = J(s;Y N U) whenever s € Js;Gy, so Hg(stU) Mu) =
H?I(siYmU)(M\U) € Cyys. By construction, ’H,J( YAu) (My) is supported on
J(sY NU) only. O
Lemma 2.5.2. Suppose that (X, G) is small. Let M € C)G(}{G and suppose that the
G-orbit of Y is regular in X. Then whenever (U, J) is small, there is a natural
D(U, Jy)-linear isomorphism

p(U,J): DU, Jy)  ® HY(M)— Hyru(Mu).
D(X,Jy)

Proof. Because J is open in G, it follows from Theorem Z47Ya) that HY (M) is
a coadmissible D(X, Jy)-module and HY (M) is a coadmissible D(U, Jy)-
module. Using the universal property of ® given in [B, Lemma 7.3], we see that the
restriction map HY (M) — HYy(M|u) induces a D(U, Jy)-linear map

p(U.J): DU, Jy)  ® HY(M)— Hyru(Mu).

D(X,Jy)

We must show (U, J) is an isomorphism. Now Hg(YmU) (Mu) € CIJJ(/\;OU) b
Lemma 25T)c), so by Theorem ZZA7(b) there is a D(U, J)-linear isomorphism

(11) D(U,J) & HYruMu) — HYyou)(Mu).
D(U,Jy)

Next, H{ (M) is a coadmissible ﬁ(X Gy )-module by Theorem 2:4.7(a), so we may
form the localisation N := Locy DX, GY)(HO (M)) € Cx/ay — see [4, §3.5] for the
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definition. Then we have the following commutative diagram:

ﬁaLJ)@B(X,@ (5()(,(;) @6 oo (M)) SR > M(U)

(X,Gy) Y L

g D(U, J) @SB(UJmsiGY) [SZ]N(SZ—lU) vvvvvvvvvvvvvvvvvvvv > g H?(sin‘]U) (M\U)

Here the isomorphism on the left comes from the Mackey decomposition, Propo-
sition 2.2.10] whereas the arrow on the right is the decomposition appearing in
equation ([@). The top horizontal arrow is obtained by combining the isomorphisms

D(X,G) ® HYM)=3M(X) and D(U,J) & M(X)—s M(U)
D(X,Gv) D(X,J)
coming from Theorem Z47(b) and [4, Theorem 4.4.3], respectively, and it induces
the bottom horizontal arrow in the diagram. Because this last arrow respects the
direct sum decomposition, we obtain D(U, J)-linear isomorphisms

(12) DU,J)  ®  [silN(s;'0) = Hy(goyru) (Mu)
D(U,JN% Gvy)

forall i =1, ..., n. Now, consider the following commutative triangle:

D(U.J) B39 (DU ) B ) HEM)) = HY ) (M)

D(X,Jv)

IR

@o(uml

D(Uv J) @6(U,Jy) H%OU(M|U)'

Here the horizontal isomorphism comes from equation (I2) by taking ¢ = 1, and the
diagonal isomorphism comes from equation ([II). We can now finally apply Lemma
2531 to conclude that (U, J) is an isomorphism. ]

We refer the reader to [3, Definition 7.5] for the notion of faithfully c-flatness.

Lemma 2.5.3. Suppose that (X, G) is small, and let H be a closed subgroup of G.
Then D(X, G) is a faithfully c-flat D(X, H)-module on both sides.

Proof. Fix a G-stable affine formal model A in O(X) and a G-stable free A-Lie lat-
tice £ in T(X). Choose a good chain (N,) for £ in G, so that p(N,,) < exp(p*n"L)
for all n > 0 where p is the action of G on O(X). Then (N, N H) is a good chain for
L in H, and by [4, Lemma 3.3.4] we have presentations of Fréchet-Stein algebras

DX, H) = lim U(x"L) H and DX.G)=lmUE "L x G.
( ) ) An (7T )KN::]WH a1l ( ; ) &n (7T )K]\ﬁ

Now U(?L\ﬁ)K X, G is a free U@K X N, N, H-module on both sides, in view
of [, Lemma 2.2.4(b)]. However this latter algebra is naturally isomorphic to

——

U(m" L)k Xn,nr H, and the result now follows from [3, Proposition 7.5(b,c)]. O
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Lemma 2.5.4. Suppose that (X, G) is small. Let Y be a Zariski closed subset of
X whose G-orbit is reqular in X and let M € CX/G Then there is an tsomorphism
of Gy -equivariant locally Fréchet D-modules on X

LocR X (HY (M) =5 HY (M).

Proof. Note that HY (M) is a coadmissible D(X, Gy)-module by Theorem LA 7(a).
In view of [4l, Definitions 3.5.1, 3.5.3 and 3.5.12], we have to exhibit a D(U)-linear
isomorphism

(V) : lm HY(M)(U H)  —  HY(M)(U)
H

which commutes with the restriction maps and Gy-equivariant structure maps on
both sides. Here the inverse limit on the left hand side runs over the set S of
U-small open subgroups H of Gy. It follows from [4, Lemma 3.4.5] that the open
subgroups of the form Jy where J is a U-small subgroup of G form a cofinal family
in S, so we may take the inverse limit over this smaller family. By [4, Definition
3.5.1], we have

HYy(M)(U. Jy) =D(U,Jy) _ & HYM).
D(X,Jy)
Unwinding the definitions, we can now see that we can take ¢(U) to be the inverse
limit of the isomorphisms ¢(U, J) that were constructed in Lemma O

We would like to show the local cohomology sheaf H$, (M) lies in Cxcy, . To-
wards this, we have the following result.

Proposition 2.5.5. Suppose that the G-orbit of Y is reqular in X, and let M €
CX/G Then whenever (U, J) is small, we have

HY (M)1u € Cu/ vy -

Proof. Define M’ := HJ(YﬁU (My), an object of CUZIQU) by Lemma 2.5.T)(c).
Since (U, J) is small and since J-orbit of UNY is regular in U, applying Lemma
5 to M’ € Cé(/‘;mU gives an isomorphism of Jyny-equivariant locally Fréchet
D-modules on U
D(U,Jyn ~
Lok ™ (Hyu (M) = Hiyg (M),
However, because Y N U C J(Y N U), using the definition of M’ we have
Hg)mU(M/) = H%)(OU(MlU) = H%(M)\U-
The result follows by combining the last two displayed equations. O
At this point, in order to proceed we must introduce the following condition.

Definition 2.5.6. We say that (X,Y,G) satisfies the Local Stabiliser Condition
(LSC) if for all U € X,,(T) such that Y NU # (), there is a U-small compact open
subgroup J of G such that

Jynu = Jy.

Note that in practice it could easily happen that Y N U is the empty set so
Jynu = J regardless of what J is, and yet Jy will in general be a proper subgroup
of J. For an explicit example, take X := P18 G := SLy(L) for some finite
extension L of Q,, Y := {co} and U := Sp K (z) the closed unit disc in P12,
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Theorem 2.5.7. Suppose that (X,Y,G) satisfies the LSC, and that the G-orbit of
Y is regular in X. Then HS, defines a functor HY : C)C(?(G — C;({/GY'

Proof. Let M € C)CS{G. By Lemma 216l we know that H$, (M) is a Gy-equivariant

D-module on X supported only on Y, and the functorial nature of H$, is clear. So,
we only have to show that H$ (M) € Cx/qy -

Let U € X, (7). If Y NU = 0, then there is nothing to do because in this case
HY (M) = 0. Assume therefore that Y N'U # (. Because (X, Y, G) satisfies the
LSC, there exists a U-small subgroup J of G such that Jy~ruy = Jy. Now use [4]
Definition 3.6.7] together with Proposition to deduce HY (M) € Cx/ay- O

We can now prove the following globalisation of Theorem 244

Proposition 2.5.8. Suppose that (X,Y,G) satisfies the LSC, and that the G-orbit
of Y is reqular in X. Then there is a natural isomorphism

. > 020 s 3G
n: 10:‘2/@,, — Hy oindg,, .
Proof. Let N' € CX s, and let M := indg_ (A). Then M is an object in
C)G(?(G by Lemma and H (M) is an object in C;((/GY by Theorem 2357
Fix U € X,(7) and choose a U-small compact open subgroup H of G. Now,

HY (M)(U) = HYy (Mu) = HYry (HYwry) (Mu)). By Proposition 233,
we have an isomorphism H%(UQY) M) = indgY (Resi’g MU> in Cy,p. Because
the G-orbit of Y is regular in X, the H-orbit of UNY is regular in U. Applying
Theorem 2.4.4] to Resgi Nu € Cg/ng gives a natural D(U, Hy)-linear isomor-
phism N(U) — H%m{(indgY (Resg‘; Nu)). Combining all these facts gives us a
continuous D(U)-linear isomorphism

v (U) : N(U) = HE (M)(U).

It is straightforward to check that this isomorphism does not depend on the choice of
H. We leave to the reader the tasks of verifying that 75 commutes with the restric-
tion maps and the Gy-equivariant structure of the sheaves N and H$ (indgY N)),
and that ny is functorial in . O

Our next goal will be to exhibit a functorial isomorphism
s G 0 =3
€ lndGY OHY — 1C>G(7G.

We are again unable to do this without the LSC. First we will show that the LSC
implies the following stronger equivariant version.

Proposition 2.5.9. Suppose that (X,Y,G) satisfies the LSC. Then for all U €
Xu(T) there is a U-small compact open subgroup J of G such that whenever sY N
U # 0 for some s € G, we have Jyyru = Jsv.

Proof. Let Z := {s € G : sY NU # (}. Note that Z and G\Z are both stable
under left-multiplication by Gy and right-multiplication by Gy. Since Gy is an
open subgroup of G by [4, Definition 3.1.8], it follows that Z is a clopen subset of
G. Since Z - Gy = Z, the image Z/Gy of Z in G/Gvy is also clopen, and hence
compact since we're assuming that Gy is co-compact in G.
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For each s € Z, the intersection Y Ns~1U is non-empty. We can therefore apply
the LSC to s71U € X, (7) to find an s~!U-small compact open subgroup H(s)
of G such that H(s)yns—1u = H(s)y. Then J(s) := sH(s)s™! is U-small, and
J(s)synu = J(s)sy. Note that J(s)s C Z for each s € Z because J(s) < Gy and
GuZ = Z. The images of the open cosets {J(s)s: s € G} in Z/Gy form an open
covering, which has a finite subcovering since Z/Gvy is compact. Choose sy, ...,
sp € G such that G = | Jir, J(s;)s;Gy and let J := (iL; J(s;). Then J is still a
U-small compact open subgroup of G.

Suppose now that s € G is such that sY N U # (; it will be enough to show
that Joynu < Ggsy. Then s € Z, so s € J(s;)s;Gvy for some i = 1, ..., n.
Write s = gs;h for some g € J(s;) and h € Gy; since sY = g¢s;Y we may
assume that h = 1. Suppose z € Jyynu. Now g € J(s;) < Gy implies that
sYNU = gs;YNU = g(s;Y NU), and hence g~ 'zg preserves s;,Y NU. But x € J
and g both lie in J(s;), so g txg € J(8;)s,ynu = J(8i)s,v by construction. Hence
g 'zg preserves s;Y and therefore = preserves gs;¥Y = sY as required. |

Theorem 2.5.10. Suppose that (X,Y,G) satisfies the LSC, and that the G-orbit
of Y 1is reqular in X. Then there is a natural isomorphism

€ indgy O/H% i> 1C>G<7G.

Proof. Let M € Cg}(G and let N := H$ (M), an object in C;((/GY by Theorem 2.5.7]
Fix U € X, (7T) and choose a U-small compact open subgroup J of G satisfying

the conclusion of Proposition 2.5.91 Then indgY (NM)(U) is a coadmissible ﬁ(U, J)-
module by [, Proposition 3.6.10, Theorem 4.4.3] and Theorem 234 We will first
construct a continuous D(U)-linear isomorphism

em(U) : indg (M) (U) — M(U).
Let s € G. Then HS(stU) (Mu) € CIJJ(/S;mU) by Lemma [2Z5.Tc), so Theorem
2471(b) gives us a D(U, J)-linear isomorphism

D(U,J) - ® HgYﬂU(MIU) — Hg(stU) (M\U)~
D(U,Jsynu)

Because of our choice of J, Proposition [2.5.9] tells us that if sY N'U # (), then
Joynu = Jsy = Gy N J.
Also, HY (M) (s7'U) = HY_, ;- y (M|s-11), and there is a natural D(U,*Gy N J)-
linear isomorphism [s]HY_, {5y (Ms-1y) = HYyu(Mju) induced by
sM(s71U) : M(s71U) — M(U).

Putting all these facts together gives a natural 13(U,J )-linear isomorphism for
cach s € G

ew(U) © DU & [SHYM)(T0) = Hyru) (Mp):

D(U,*GynJ)

This map is given by a®[s|m — a - sM(m) for a€D(U, J), meH?_y y(Ms-1y).
Using this description, we can verify that if t = hsb~! for some h € J and b € Gy,
then e'/]\’/f(U) = eﬁ (U)o n(Jh p) Where n{hvb) are the maps appearing in the proof of

2If sY N'U = () then both terms are zero, and we define E}]\j to be the zero map.
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Proposition 2271 Thus we can take the limit of these maps to obtain a ﬁ(U, J)-
linear isomorphism

v (U) :+ ImDUT)_ ®  [§HY(M)(sTU) = HY gy (Mu)
s€Z D(U,sGyNJ)

for every J, Gy-double coset Z in G. Taking the direct sum over all double cosets
in J\G/Gvy and using Lemma 25.Ti(b) gives a D(U, J)-linear isomorphism
el (U) : M(U,J) = M(U)

using the notation from Definition[Z2Z§(b). Finally, let J’ be an open subgroup of .J,
and recall the D(U, J')-linear isomorphism o, : M (U, J') — M(U, J) constructed
in Proposition 22,111 Once we show that

(13) (U)o a = el (U),
it will follow that the maps ej/l assemble correctly to give the required continuous
D(U)-linear isomorphism

em(U) :=lim e} (0) : ind&., (AV)(U) — M(U).

To see that (I3) holds, after unwinding the definitions we find that it is enough to
check that for each y € J and s € G, the following diagram is commutative:

D(U,7) ®55.0e gy WSV (y5) 71 U)

B(UT) B0,y 1y SN (571 0)

M(U)

e (U)

Here the vertical arrow a¥ comes from the proofs of Propositions 2.2.11] and 2.2.101
and is given by a¥(a®[ys|m) = ay(y)®[sjm for every a € D(U,J’) and m €
N((ys)~U), because y U = U since y € J < Gy. We can compute that

e (U)(a¥(@B®[yslm)) = ay(y) - ™ (m) = a- (ys)™ (m) = €4, (U)(aB[ysm)
which shows that the diagram commutes.

To prove that e : indgY (HY (M)) — M is an isomorphism in Cx ¢, it remains
to show that e,q commutes with restriction maps in the sheaves inde (HS (M)
and M, and also that it commutes with the G-equivariant structure on both of

these sheaves. To complete the proof, we must also check that e is functorial in
M. We leave these three straightforward verifications to the reader. O

Corollary 2.5.11. Let G be a p-adic Lie group acting continuously on the smooth
rigid analytic space X, and let Y be a Zariski closed subset of X. Suppose that

(a) the stabiliser Gy of Y is co-compact in G,
(b) the G-orbit of Y is reqular in X, and
(¢) (X,Y,G) satisfies the LSC.
Then the functors
MY Ce = CX oy and  indG, : CX o, — CS

are mutually inverse equivalences of categories.
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Proof. The functor HY sends C)C(?(G into C¥ Gy by Theorem 257 and the func-

tor indgY sends C;({ /Gy into C)GJ(G by Lemma [2.3.51 The result now follows from

Proposition 2.5.8 and Theorem Z5.10. O

It seems to the author that the three conditions in Corollary 2Z.5.11] are close to
being necessary in order for this equivalence to hold. Here is an example which
shows that the LSC condition from Definition [2.5.6]is not vacuous.

Example 2.5.12. Let X = Sp K (z,y), let Y := V(zy) and G = (g) = Z, be a
pro-p-cyclic group acting on X by the rule

g (a,b) = (a+p*\,b) forall \€Z,
Then (X,Y,G) does not satisty the LSC.

Proof. Let U := X (p/x); this is an affinoid subdomain of X. The group G preserves
the locus {(a,b) € X : |a| < |p|} and therefore it also preserves U. We can compute
that Y N'U = Sp K(z,y,p/z)/(xy) is the locus {(a,0) € U}, and this is again
preserved by G. Therefore Jy~uy = J for any open subgroup J of G. However if
g € Jy for some \ € Z,, then since (0,1) € Y, we must have g*(0,1) = (p?)\,1) €
Y, which is only possible if A = 0. Thus Jy is trivial and never equal to Jyny. O

Note that the Zariski closed subset Y is connected in Example SO we
need to impose a stronger condition on Y in order to be able to show that the LSC
condition holds. Recall the notion of irreducible rigid analytic spaces from [10,
Definition 2.2.2], and note that the subset Y in Example is not irreducible.
In the remainder of §2.5] all rigid analytic varieties are understood to be reduced.

Lemma 2.5.13. Let Z be an irreducible rigid analytic variety.

(a) Ewery non-empty connected affinoid subdomain of Z is irreducible.
(b) Suppose that Z is affinoid. Then O(Z) is an integral domain.

Proof. (a) Suppose for a contradiction that V is an affinoid subdomain of Z which
is not irreducible. Let A be the Noetherian algebra O(V) and let Py, ..., P, be
the distinct minimal primes of A. It follows from [I0, Lemma 2.2.3] that n > 2.
Now P N---N P, is the zero ideal in A because V is reduced. Let P := P; and
Q := P, N ---N P,; then one checks easily that Ann(P) = @ and Annx(Q) = P.
Let V7 and Vs be the Zariski closed subsets of X defined by the vanishing of the
ideals P and @, respectively. Because V is connected, the intersection Vi N'Vy is
non-empty. Take x € V1 NVy and let m be its maximal ideal in A; we will show
that the local ring Ay, is not a domain. If the localisation Py, is zero, then we can
find s € A\m such that P-s =0 and then s € Anns(P) = Q. Since @ vanishes on
V3 5 z, () is contained in m which implies s € m, a contradiction. Similarly, the
ideal Qu of Ay, is non-zero because Anng(Q) = P. Now Py - Qum = (PQ)m is zero
because PQ C PN =P N---N P, =0, so Ay, has zero-divisors as claimed.

By [7, Proposition 7.3.2/3], there is an injective map Ay — Ov g, 50 Oy
is not a domain. Because V is an affinoid subdomain of Z, the restriction map
Oz, — Ov is an isomorphism. However, it was observed in the paragraph
following [I0] Definition 2.2.2] that [I0] Lemma 2.1.1] implies that Spec(Oz ;) is
irreducible if and only if there is a unique irreducible component of Z passing
through z. Since Z is reduced and irreducible by assumption, this implies that
Oz, is an integral domain, which gives the required contradiction.

(b) This follows from [10] Lemma 2.2.3]. O
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Lemma 2.5.14. Suppose that X is affinoid and that 'Y is irreducible. Let U be an
affinoid subdomain of X such that Y NU # (. Then

Gvnu NGu < Gy.

Proof. Since Y is Zariski closed in the affinoid variety X, it is itself affinoid. Since
it is also irreducible, its coordinate ring O(Y) is an integral domain by Lemma
2513(b). Since Y N U is a non-empty affinoid subdomain of Y, the proof of
[T, Proposition 4.2] now shows that the restriction map O(Y) — O(Y N U) is
injective.

Let Z be the coherent subsheaf of Ox consisting of rigid analytic functions van-
ishing on Y it follows that the kernel of the restriction map O(X) - O(Y NU) is
equal to Z(X). Now if g € Gynu NGy then the action of g on O(X) must preserve
this kernel. Hence g preserves Z(X) and therefore also Y. (]

We can now give some sufficient conditions on (X,Y,G) that ensure that the
LSC is satisfied.

Proposition 2.5.15. Suppose that the following conditions hold:

(a) X is separated,
(b) Y is irreducible,
(c) there is an admissible affinoid covering {X;} of X such that
(1) Y, :=Y NX,; is connected for each i, and
(i) My,z0 Gx, is open in G.
Then (X,Y,G) satisfies the LSC.

Proof. Note that the assumptions (b) and (c)(i) together with Lemma [2Z5.T3|(a)
imply that every non-empty Y is irreducible.

Let U € X, (T) be such that Y N U # (. Choose any U-small open subgroup
H of G, and define

J:=Hn ﬂ Gx,.
Y #0
Assumption (c)(ii) ensures that J is still an open subgroup of Gj; it is therefore
also U-small by [4, Lemma 3.4.5]. With this choice of .J, every member X; of our
covering for which Y; # () is J-stable.

We have to show that gY C Y for every g € Jynu. Write U; := UNX, for each
1; this is an affinoid subdomain of X; because X is assumed to be separated. Since
Y N U is non-empty by assumption, there is some index ¢ such that Y; N'U; # 0.
Since X is J-stable, g also preserves Y;NU; = YNUNX;. Since Y} is irreducible,
g preserves Y,; by Lemma 2.5.14 applied to X;,Y; and Us,.

Because Y is assumed to be irreducible, it is connected. Since Y = U; Y, it will
now suffice to show whenever gY; C Y, and Y; Y}, # 0, we also have gYj, C Y.
Now Y/, is also irreducible and X; N X}, is an affinoid subdomain of X}, because X
is separated. We may apply Lemma 25T4 to Xy, Y and X; N X}, to deduce that
g preserves Yy, because Yi, N (X; N Xy) =Y, NYy # 0 by assumption. a

Before we can give the proof of Theorem [Al we need two results from rigid
analysis that are probably well-known but for which we could not find a reference.

Lemma 2.5.16. Suppose that X is affinoid. Then there is a finite admissible
affinoid covering {X;} of X such that each Y N'X; is connected.
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Proof. Since Y is Zariski closed in the affinoid variety X, it is also affinoid, and
therefore admits a decomposition Y = Y;U- - -UY,, into pairwise disjoint connected
components. By induction on n, we will now construct an affinoid covering {X;}
of X such that Y N X,; =Y, for each 1.

Fix 0 # 7 € K such that |r| < 1. Let e € O(X) be such that its image € in O(Y)
is an idempotent which is 0 on Y7 and 1 on Y\Y;. Then X = X(e/7) UX(7/e) is
an affinoid covering of X, X(e/m)NY =Y (e/7) =Y; and X(7/e) N Y =Y\Y;.
By induction, we can find an affinoid covering {Xa,...,X,} of X(7/e) such that
X;NY =Y, for each i > 2. Letting X; := X(e/7) completes the induction. a

Lemma 2.5.17. Suppose that the Zariski closed subspace Y of X is quasi-compact.
Then there is a quasi-compact admissible open subspace U of X containing Y such
that {U,X\Y} is an admissible open covering of X.

Proof. By considering the restriction of an admissible affinoid covering of X to
the quasi-compact subspace Y, we see that Y is contained in a finite union U of
affinoid subdomains of X. Certainly X\Y is an admissible open subset of X; this
follows from [7] Corollary 9.1.4/7]. We must show that {U, X\'Y} is an admissible
covering. Let X’ be an affinoid subdomain of X, let U’ := X’NU and Y’ := X'NY;
it will be enough to show that {U’, X’\Y'} is an admissible covering of X'. Now
U’ is an admissible open subspace of X’ containing the Zariski closed subspace Y’
of X’; in this situation, [I8, Lemma 2.3] implies that the covering {U’, X’\'Y'} of
X’ admits a finite affinoid refinement and is therefore admissible. O

Combining these two results we obtain the following sufficient condition.

Corollary 2.5.18. (X,Y,G) satisfies the LSC whenever X separated, and Y is
irreducible and quasi-compact.

Proof. It is enough to verify condition (c) of Proposition

By Lemma 2517 we can find a quasi-compact admissible open subspace U of
X containing Y such that {U,X\Y} is an admissible covering of X. Choose a
finite admissible affinoid covering {Uy,---,U,} of U; by Lemma [Z5.T6] we may
replace this covering by a finite affinoid refinement and thereby assume that each
U;NY is connected. Choose an admissible affinoid covering {V;} of X\'Y so that
{U1,...,U,}U{V,} is an admissible affinoid covering of X. Then the intersection
of Y with every member of this covering is connected (and possibly empty) by
construction, showing that this covering satisfies condition (c)(i). Because only
finitely many intersections U; N'Y are possibly non-empty and because each Gy,
is open in G by [4 Definition 3.1.8], we conclude that this covering also satisfies
condition (c)(ii). O

Proof of Theorem [Al Combine Corollary Z.5.11] with Corollary 2.5.18 O

In practice, the quasi-compactness condition on Y is still too strong to be nec-
essary, and we can establish the LSC in certain other cases, as follows.

Lemma 2.5.19. Suppose that (X,Y,G) satisfies the LSC and that X' is a G'-stable
admissible open subset of X for some open subgroup G' of G. If Y' :=X'NY, then
(X', Y',G') also satisfies the LSC.

Proof. Let U € X! (T) be such that UNY’ # (. Then also U € X,,(T) because
X’ is an admissible open subset of X, so because (X,Y,G) satisfies the LSC,
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we can find a U-small compact open subgroup J of G such that Jynu = Jy.
Since G’ is open in G by assumption, J' := J N G’ is open in J. Then J’ is
U-small by [4, Lemma 3.4.5], and it will be enough to show that Jy,~y < J4.
Let g € Jyqy; then g € J' < G’ stabilises X’ by assumption, and ¢ stabilises
YNU=YNX'NU=YNU since U C X’'. So g also stabilises X’'NY =Y’. O

Y ~

3.1. Side-switching operations. Here we extend the material in [2] §3] and show
that there is a canonical equivalence of categories between the categories of coad-
missible G-equivariant left D-modules and of coadmissible G-equivariant right D-
modules on any smooth rigid analytic space X equipped with a continuous G-action.

We begin with some algebraic generalities. Let R — A be a homomorphism of
commutative rings, let L be an (R, A)-Lie algebra, and let G be a group. Suppose
that we are given an action of G on L as defined in [4, Definition 2.1.5]. Then by
[, Corollary 2.1.9], G acts on U(L) by R-algebra automorphisms and we may form
the skew-group ring U(L) x G.

Lemma 3.1.1. Suppose that L is finitely generated and projective as an A-module
of constant rank d. Then Q, := Homa(A% L, A) a right U(L) x G-module.

Proof. Recall that for any n > 0, the Lie derivative gives a left action x — Lie,, of
the R-Lie algebra L on the R-module Homa (A} L, A) of alternating n-forms on L
with values in A. This action is given explicitly as follows:

(14)

Liex(qﬁ)(vl/\w-/\vn)—z~¢(v1/\-~-/\vn)—q§<Zv1/\~-~/\[3:,vi]/\~--/\vn>

i=1
whenever ¢ € Homy (A L, A) and z, vy, ..., v, € L. Now if in addition L is finitely
generated and projective as an A-module of constant rank d, then
w-a:=aw and w-x:=—Liey(w) forall a€ Ajxe LweNL

defines a right U(L)-module structure on Q. See [I6 Proposition 2.8] for more
details. On the other hand, there is a right R[G]-module structure on 2y, given by

(W-g)vr A~ Awvg) =g -w(g-vi A---Ag-vg),
where w € Qp,9 € G and vy, ..., vy € L. A straightforward calculation shows that

-1 —1

(w-9)-2)-g7 =w-(g-2) and ((w-g)-a)-g =w-(g9-a)
hold whenever w € Qp,9 € G,z € L and a € A. These formulas mean that the
right actions of U(L) and R[G] on €y, combine into a right U(L) x G-action. O

We will assume from now on that L is a finitely generated projective A-module
of constant rank d, and write S := U(L) x G for brevity. We can now use Qy, to
convert left S-modules into right S-modules, and vice versa, as follows.

Lemma 3.1.2. Let M be a left S-module, and let N be a right S-module.

(a) Qp ®a M is a right S-module, with the right actions of L and G given by

(15) (we@m) z=wr@m-—w®zm and (WOM) -g=wg®g 'm

forallweQp,me M,x € L and g € G.
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(b) Homa (2, N) is a left S-module, with the left actions of L and G given by

(16) (2 9)(w) = p(wz) — p(w)z  and (g-¢)(w) = S(wg)g™*
for all € Homa(Qp, N),w € Qp,z € L and g € G.
(¢) The canonical A-linear evaluation and coevaluation maps, namely 1, & 4

Homa(Qr,N) = N and M — Homa(Qp, Qr ®4 M), are S-linear.

Proof. Note that the actions of U(L) agree with the standard ones from [2, §3.1,
(6) and (5)]; note also that Q. is a projective A-module of constant rank 1, i.e. an
invertible A-module, so the two maps appearing in part (c) are in fact isomorphisms.
We have to show that formulas ([5]) and ([I8) define actions of the R-Lie algebra
L and the group G on Qf, ® 4 M and Homa(Q, N), and that these actions are
compatible: whenever w € Qp,m € M, ¢ € Homa(Qp,N),z € L and g € G,

(w@m)-g)-x)-g7'=(w@m) (g-2) and g-(z-(g7" @) =(g-2) .

These are straightforward verifications so we omit the details. (I
Armed with this result, we immediately obtain the following

Corollary 3.1.3. The functors M +— Qp @4 M and N — Homu(Q,N) are
mutually inverse exact equivalences of categories between the category of left S-
modules and the category of right S-modules.

We will next need to know what these side-switching functors do to finitely
presented S-modules; to that end, we study €27, ® 4.5 closely. There are two natural
ways to view 0 ®4 S as a right S-module: one of these comes from the left action
of S on itself and Lemma BT.2(a); the other, which we’ll denote by o, comes from
the right action of S on itself. Following [2] §3.2], we will write 5, @4 S to denote
the right A-module Qf ®4 S equipped with the o-action of S on the right.

Lemma 3.1.4. There is an S-linear isomorphism o : Qp, @4 S = Qr ®a S given
by a(w®s) = (w®1)s for allw € Qp,s € S, which satisfies a* = 1.

Proof. The canonical filtration on U(L) is G-stable. It follows that there is a
natural exhaustive positive filtration Fy on S such that Fp = A x G and F,, =
L-F, 1+ F, foralln>1. Letwe Qp,s€S5,a€ AandgeG. Using (IT) we
see that a((w® s)(ag)) = a((wa®s) - g) = a((wa)g® g~ts) = ((wa)g® 1) - g ts =
(wa®g)-s = (w®ag)s. Now the proof of [2, Lemma 3.2] works with straightforward
modifications. O

Corollary 3.1.5. The functors appearing in Corollary [B.1.3] preserve the categories
of finitely presented S-modules.

Proof. The cokernel of a morphism between two finitely generated projective mod-
ules is finitely presented. Because F := Q; ®4 — and G := Hom 4 (Q,, —) are exact,
it will be enough to verify that F'(S) and G(S) are finitely generated and projective.

Since €, is a finitely generated projective A-module, QO @4 S is a finitely gen-
erated projective right S-module. Hence the right S-module F(S) = Qr ®4 S is
finitely generated projective by Lemma B4

Since Homu4 (€2, A) is a finitely generated projective A-module, it is a direct
summand of a finitely generated free A-module. Tensoring by €2, and using the
fact that 27, is an invertible A-module, we can find an A-module Q and an integer
m > 0 such that A® Q = Q7. Hence S @ (Q @4 S) = (Qr @4 S)™ and therefore
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G(S) is a direct summand of G(Qr, @4 S)™. Since F' and G are mutually inverse
and F(S) = Qp ©4 S by Lemma BT we see that G(S) is a direct summand of
S™. Hence the left S-module G(S) is finitely generated and projective. O

We now return to rigid analytic geometry, and suppose that (X, &) is small.
Thus the group G is compact p-adic analytic and we can find a G-stable affine
formal model A in O(X) as well as a G-stable free A-Lie lattice £ in 7 (X), of rank
d say. Let Qp := HomA(/\d L, A). This is a free A-module of rank 1 as well as a
right U(L) x G-module, by Lemma BTl Recall also the open normal subgroup
Gr = p~L(exp(pL)) of G from [, Definition 3.2.11], where p : G — Autyx O(X) is
the action of G on O(X), and the crossed product U/(Z) xn G from [ §3.2].

Lemma 3.1.6. Let H be an open normal subgroup of G contained in Gz. Then
Qr is a right (7(2) X g G-module.

Proof. Because §, is m-adically complete, it follows from Lemma B.I1] that it is
naturally a right module over the m-adic completion of U(L) x G. The canonical
map from U/(E) to this m-adic completion factors through U/(Z) X G, hence Q/ is
also a right (T(E) x G-module. It remains to show that this action of U/(Z) x G

factors through U/(-Z) xg G. To that end, let ¢ € H and let € £ be such that
plg) = exp(pﬁx)' we must show that exp(p(z)) — g kills Q, on the right, where

t: L — U(E) is the canonical map. Let m > 0, w € Q, and vy, ..., vg € L; then
it follows from ([I4) that (w - ¢(x)™)(vy A+ A vd) is equal to

2. (io, i, i, . .. ,id> (—2)" - w (ad(z)™ (v1) A+ Aad(z)" (va)) |

where the sum is taken over all (d + 1)-tuples (zo, ...,1q) of non-negative integers
such that ig + -+ +iq = m. Now p(g~!) = exp(—p ) and

exp(p© ad(z))(v) = exp(p‘z)vexp(—p‘x) = p(g)vp(g) " =g v

for any v € L by [I1l Exercise 6.12]. It follows from these facts that

(w cexp(pe(x))(v1 A+ Avg)

e Z ( o id) (=) w (ad(z)™ (v1) A -+ Aad(z)"(vg))

10521522, ...
=0 Z’L'_m 0,101,702,

S CEOR (A ) D)

|
jeNa+ 10 21 1d:

:gil.w(g.ful/\.../\g.vd):(w.g)(yl/\.../\vd)_

Thus Qf - (exp(pe(z)) — g) = 0, as required. O

Lemma 3.1.7. Let M be a m-adically complete U/(Z) x G-module. Then Q@4 M
is a right U(L) x G-module, and whenever © € L,w € Qp and m € M, we have

(w@m)-exp(pi(r)) = w - exp(pi(z)) @ exp(—p°i(x)) - m.
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Proof. Note that Qy ® 4 M is w-adically complete by [2] Lemma 3.3]. Now the first
statement follows from Lemma B.IT] and Lemma BI.2Ib). Using ([IH), we have

I
(]2

3 i
©
®
g
&

3

(w®@m) -exp(pi(z))

I
[]¢
3|,
= 3

\"M:
VRS
)
~_
€
=

53
=

®

|
=
&
s

<

3

= w - exp(p()) ® exp(—p“u(x)) - m. O

Let H be an open subgroup of G contained in G, and write S := U/(-Z) xg G.

Corollary 3.1.8. Let M be a w-adically complete S-module.

(a) If M is a left S-module, then Qr @4 M is a right S-module.
(b) If N is a right S-module, then Hom4(Qz, N) is a left S-module.

Proof. Let g € H and let 2 € L be such that p(g) = exp(pz). By Lemma B0 we
have w-exp(pi(z)) = w-g for all w € Q. On the other hand, exp(p(z))-m = g-m
for all m € M because M is a left S-module. Using Lemma BI.7 we have

(w@m)-exp(p(z)) = w-exp(p°e(z)) @exp(—p () m = w-gRg ™ m = (w@m)-g.

Hence the U/(Z) x G-action on Qp ® 4 M factors through S, and part (a) follows.

Part (b) is proved in a similar manner. O
— X —

Recall the trivialisation 8 : H — U(L) of the action of H on U(L) from
[4, Theorem 3.2.12]. Recall also from [4 §2] that R denotes the ring of integers
of the non-archimedean ground field K. Our next technical result will help us to

—

identify the image of & = U(L) Xy G under the side-switching functor Q, ® 4 —
from Corollary B.I8(b).

Proposition 3.1.9. Let R be any proper homomorphic image of R, write A :=
R@r A, let L be the (R, A)-Lie algebra R @ L, and write S := U(L) xy G. Then
there is a right S-linear isomorphism Qp @4 S =2 Qp ®4 S.

Proof. Write T := U(L) x G, and let I be the kernel of the canonical surjection
T — S. Tt follows from the proof of [4, Lemma 2.2.4] that {8(g)g ! —1:9 € H}
generates I as a right T-module, and also that {gB(g) "' —1: g € H} generates I as
a left T-module. For each g € H, let rg(4y,-1 denote the left T-linear endomorphism
of T given by right-multiplication by 8(g)g~*!, and let L43(g)-1 denote the right T-

linear endomorphism of T given by left-multiplication by gB(g)~!. This gives us
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the following presentations of S as a left, respectively, right, T-module:

Z T8(g)g—1-1

ge€H
pr T — 5 —0,
geEH

2;169[3(9)_1—1
and PT = T — S — 0.
geH

Because f3 is a trivialisation of the G-action of U(L), gB8(g)~! — 1 commutes with
U(L) inside T', and hence £yg(5y-1_1 is also left U(L)-linear. Therefore the second
presentation can be regarded as an exact sequence of A—T-bimodules. Now consider
the following diagram:

Z 10€,5¢9)-1-1

geEH

P QroaT QLoaT ——=QL04 5 ——0
geEH :

l v
P QAT QL RIAT ——= Q45 ——=0
geH Z 1®75(g)g=1-1

gEH

Here the top row is obtained by applying the twisting functor 24 @4 — to the
presentation of S as a right T-module, and the bottom row is obtained by applying
the side-switching functor 5, ® 4 — to the presentation of S as a left T-module.
We will show that the diagram commutes.

Let g € H and write 8(g) = exp(p“t(x)) where px = log p(g) € p°L. Let w € Qf,
and u € T, and define z := 3(g)g~*. Then using Lemma B.1.7, equation (&) and
Lemma we see that

(wou) z=(w-Blg)@Bg) 'u) g =w B9y ©gbl9) Tu=weztu
Using this equation together with Lemma B.1.4] we calculate
(1®r,_1)oa) wu)=aw®u)o(z—1)=a((w®u)- (2 —1))
—alw® (= = u) = (a0 (1861 ,)) WS ).

Hence the diagram commutes. Because its rows are exact and because « is an
isomorphism by Lemma [B.T4l by the Five Lemma the map « descends to a right
T-module isomorphism Qf @4 S = Qp ®4 S, appearing as a dotted arrow in the
diagram. Since the action of T" on these modules factors through S, it is in fact a
right S-linear isomorphism. (Il

Corollary 3.1.10. There is a Tight S-module isomorphism Qy @4 S Z Qr @4 S.

Proof. Fix n > 0, and write R,, := R/7"R, A, := A®r Rp, L, := LOr R
and S, = S ®r R, = U(L,) xyg G. Proposition B.TIl gives an isomorphism
on : Qp, @4, Sn = Qr, ®a, Sp of right S-modules. Because the R-module
Qr ®48 is m-adically complete by [2] Lemma 3.3] and the «,,’s are compatible, the
result follows by passing to the inverse limit. ([l
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Proposition 3.1.11. Suppose that [L,L] C 7L and L- A C wA. Then the functors
M= Q@4 M and N — Homu(Qp,N) are mutually inverse equivalences of
categories between the categories of finitely presented left S-modules and finitely
presented right S-modules.

Proof. Because §2, is a finitely generated projective A-module, the given functors
are exact mutually inverse equivalences between the categories of left A-modules
and right A-modules. It follows from [2, Lemma 3.3] that the functors send -
adically complete left A-modules to m-adically complete right A-modules. Corol-
lary and Corollary B.1.8 now imply that the functors restrict to exact mutu-
ally inverse equivalences between m-adically complete left S-modules and 7-adically
complete right S-modules.

—

By construction, S = U Xy G is a free U := U(L)-module of finite rank, so every
finitely generated S-module is also finitely generated as a U/-module. Under the
given assumptions on £, it follows from [4, Lemma 4.1.9 and Proposition 4.1.6(c)]
that every finitely generated S-module is m-adically complete. Now, Qy ® 4 S is
a finitely generated projective right S-module by Corollary B.I.I0l Following the
proof of Corollary B.I.5] we see that Hom 4(Q, S) is a finitely generated projective
left S-module. The result now follows from the exactness of the two functors. [

Recall that Q(X) denotes the O(X)-module Hom@(x)(/\%(x) T(X),0(X)), and
that A denotes some fixed G-stable affine formal model in O(X). If U is a left
(respectively, right) Noetherian ring, we will write Coh(U) (respectively, " Coh(U))
to denote the abelian category of finitely generated left (respectively, right) U-
modules.

Theorem 3.1.12. Let X be a smooth K-affinoid variety. Suppose that

(a) T(X) admits a free A-Lie lattice L for some affine formal model A C O(X)
which satisfies [L,L] C 7L and L- AC A, and

(b) G is a compact p-adic Lie group which acts on X continuously and preserves
ACOX) and L C T(X).

Let H be an open normal subgroup of G contained in Gz, and let U :== U(L)g X g G.
Then there is an equivalence of categories

Coh(U) = " Coh(U)
given by the functors Q(X) ®ox) — and Homex) (2(X), —).

—

Proof. Note first that under the given assumptions on £, S := U(L)g xg G is
left and right Noetherian, by [4, Lemma 4.1.9 and Theorem 4.1.4], so every finitely
generated S-module is automatically finitely presented.

Let M be a finitely generated left S-module. Then there is an S-linear map
€: 8% = M for some b > 1 whose image M spans M as a K-vector space. Note

—

that S® is a free U(L)-module of finite rank, so kere is a finitely generated S-
module by [4, Lemma 4.1.9 and Theorem 4.1.4], because of the given assumptions
on L. Thus M is a finitely presented left S-module, so 2y ® 4 M is a finitely
presented right S-module by Proposition B.I.TIl It follows that Q(X) ®ox) M =
K ®r (Qz ®4 M) is a finitely generated right S-module. The same argument
shows that Homepx)(2(X), N) is a finitely generated left S-module whenever N
is a finitely generated right S-module. Because Q(X) is a free O(X)-module of
rank 1, the two functors are mutually inverse adjoint equivalences of categories
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between left O(X)-modules and right O(X)-modules, and it follows from Lemma
BI2c) that the unit and counit morphisms for the adjunction are in fact S-linear
on finitely generated S-modules. So the restrictions of these functors to finitely
generated S-modules are mutually inverse equivalences. O

Lemma 3.1.13. Let Lo < L1 be two G-stable free A-Lie lattices in T (X). Suppose
that Hy < Hy are open normal subgroups of G such that H; < G, fori = 1,2.

Then there is a commutative diagram of right U(Ls) x X i, G-modules

) o (U@K i, G) —0X) g (U@K M, G)

axl: :lak

AX) ® (UlLa)x xn, G) —=X) @ (UL)x %, G).
o(X) o(X)

Proof. The vertical arrows come from Corollary and the horizontal arrows

come from [4] Proposition 3.2.15] and functoriality. O

Theorem 3.1.14. The pair Q(X) ®ox) — and Homepx)(QX), —) defines mu-
tually inverse equivalences of categories between coadmissible left 5(X, G)-modules
and coadmissible right D(X, G)-modules.

Proof. Let L be a G-stable free A-Lie lattice in 7(X) such that [£, £] C 2L and
L- A C 7 A and note that each m-power multiple of £ also satisfies these conditions.
Choose a good chain (H,) for £ in G, in the sense of [, Definition 3.3.3]. Write

Sp=U(m"L)k g, G and S = ﬁ(X, @), so that we have a standard presentation
S = l'&lSn as a Fréchet-Stein algebra, by the proof of [4, Theorem 3.4.8].

Suppose that (M,) is a family of finitely generated left Se-modules and let N, :=
QX) ®o(x) Mo. By Theorem B.I.T2 (N,) is a family of finitely generated right
Se-modules. We will verify that (IN,) is coherent if and only if (M,) is coherent,
that is, there are isomorphisms Ny, 11 ®g,, ., Sn = N, for each n > 0 if and only
if there are isomorphisms S, ®g,, ,, Myy1 = M, for each n > 0. If Q is a finitely
generated left S, 11-module, define a right S,,-linear map

0q: (UX) ®ox) Q) ®s,41 Sn = AUX) ®ox) (Sn ®s,,4, Q)
by setting 8o (w®m) ® 1) = (w® 1 ® m)r. Then 6 is a natural transformation
between two right exact functors, and it follows from Lemma B.I.T3| that g, is
an isomorphism. Hence ¢ is an isomorphism for all ) by the Five Lemma. Thus
Nnpt1 ®s,., Sn =2 QUX) ®ox) (Sn ®5,,, Mny1). So Ny = Ny ®s,,,, Sy if and
only if M, = S, ®s, ,, Mp11.

It now follows from Theorem that (M,) — (N,) is an equivalence of
categories between coherent sheaves of left So-modules and coherent sheaves of
right Se-modules. Finally, since (X)) is a direct summand of a free A-module, for
every coadmissible left S-module M there are canonical isomorphisms

QX)) ® M=QX) ® (limsS,®sM)=lnQX) ® (5, ®sM
(X) 5 M=(X) & (m$, 05 M) = ma(X) © (5,95 M)
of left O(X)-modules. Using these isomorphisms we can define a right S-module
structure on Q(X) ®px) M. Similarly, the canonical isomorphisms

Hompx)(Q2(X), N) = Hompx)(UX), N ®s Sn) = S, ®s Hompx) (2(X), N)
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induce a left S-module structure on Homex)(£2(X), N) for every coadmissible right
S-module N. The result now follows from [27, Corollary 3.3]. O

We now come to the main result of §3.I} it is an equivariant generalisation of
[2, Theorem 3.5]. Let G be a p-adic Lie group acting continuously on the smooth
rigid analytic variety X; we will write "Cx /g to denote the category of right G-
equivariant coadmissible D-modules on X.

Theorem 3.1.15. The functors Qx ®ox — and Homoy (Qx, —) are mutually in-
verse equivalences of categories between Cx /¢ and "Cx /-

Proof. By working locally and using Lemma B.1.2] we see that if M is a left G-
D-module on X, then Qx ®oy M is a right G-D-module on X; similarly if M
is a right G-D-module on X then Homo, (Qx, M) is a left G-D-module on X.
It is straightforward to verify that these functors convert locally Fréchet left G-
equivariant D-modules into locally Fréchet right G-equivariant D-modules, and vice
versa. Because these functors are naturally quasi-inverse on the level of sheaves of
Ox-modules, it remains to check that they preserve coadmissibility. We will show
that if M € Cx/q, then Qx ®ox M € "Cx g, and leave the corresponding statement
about Homo, (2x, —) to the reader.

Let (X, G) be small and let M be a coadmissible left 5(X, G)-module, so that
AUX) ®ox) M is a coadmissible right 5(X,G)—module by Theorem B.II4l In
view of [4, Definition 3.6.7], it remains to verify that there is a continuous right
G-D-linear isomorphism
(17) Lock®® (Q(X) ® M) >~  Qx ® Locg ™9 ().

O(X) Ox
Let Y be an affinoid subdomain of X, and let H be a Y-small open subgroup of
G. We will first exhibit an isomorphism of right ﬁ(Y, H)-modules

T(Y,H):(Q(X) ® M) ® D(Y,H) —Y) ® (M ® D(Y,H)
o0(X) D(X,H) a((Y) D(X,H)

which is natural in Y and H. To this end, fix an H-stable affine formal model A
in O(X) and an H-stable A-Lie lattice £ in T (X). By rescaling £ if necessary and
applying [3, Lemma 7.6(b)] together with [4, Lemma 4.3.5], we may assume that
O(Y) admits an L-stable and H-stable affine formal model B. We may also assume
that [£,£] C 7L and £- A C 1w A. Choose a good chain (H,) in H for £ using

[, Lemma 3.3.6], and write U,, := U@K g, Hand V,, :=U(B®4 7" L)k X g,
H, so that D(X, H) = lim U, and D(Y, H) = lim V,, by [4, Lemma 3.3.4]. For each
finitely generated left (Kmodule Q, define a right V,,-linear map

TQ : (Q(X) O%Q Q) g@ Vi = Q(Y) O%) (Vn gi Q)

by setting 7o ((w®m) ® v) = (w|ly ® (1 ® m))v. Then 7 is a natural transforma-
tion between two right exact functors, and we see that 7y, is an isomorphism using
Corollary B.I.10 together with the proof of [2, Lemma 3.5]. Hence 7¢ is an isomor-
phism for all Q by the Five Lemma. Passing to the limit as n — oo, we obtain
the required 5(Y7 H)-linear isomorphism 7(Y, H) as the limit of the isomorphisms
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Tu, where M, :=U, ®B(X ) M for each n > 0. We leave it to the reader to verify
that 7(Y, H) is natural in both Y and H.

Finally, let g € G and write NV := Q(X) ®o(x) M. Using the definitions given
above, we can check that the following diagram is commutative:

—~ ~ T(Y,H) - .

D(X,H) QY) Bx.H)

9¥,H ng(Y)(@g\A{H
N_& D(gY.gHg ) —~Q(gY) ® (D(gY,gHg™Y) ® M
D(X,H) T(gY.gHg™") Q(gY) B

where the vertical maps come from [4, Proposition 3.5.7(a)]. Now the maps 7(Y, H)
assemble together to form the continuous G-D-linear isomorphism in (7). g

3.2. Microlocal Kashiwara equivalence. In §3.2] we will extend the results
from [2, §4] to our setting, where the ground field K is no longer assumed to be
discretely valued, or equivalently, when its valuation subring R is not Noetherian.
As in [2], §4.2], we begin by fixing an affine formal model A in a K-affinoid algebra
A and an (R, A)-Lie algebra £ which is finitely generated and projective as an

—

A-module. We will work with right U(L)x-modules throughout §3.21

Whenever M is an A-module and F is a subset of A, we denote the submodule
of F-victims in M by M[F]:={m € M : mf = 0Yf € F}. If, in addition, M is a
Banach A-module, we have at our disposal the A-submodule
f—' =0 VfeF}
n

Map(F):=={me M: lim m

n—oo
of divided-power topological F-torsion in M. This is the case whenever M is a

finitely generated U(L)x-module, as M then is naturally a Banach A-module.

When F = {f1,..., fr} is finite, we write £ - (fi,..., fr) for the A-submodule
{y-fi, .-y fr):yeLtof A" and Cp(F):={ye L:y-f =0forall f € F} for
the centraliser of F'in £. The main result of §3.2]is

Theorem 3.2.1. Let F' = {f1,...,f.} C A be such that L - (f1,...,fr) = A",
and let C := Cr(F). Suppose that [L,L] C nL and L- A C wA. Then there is an
equivalence of categories

{N € Coh(U(C)x): N-F = o} = {M € Coh(U(L)x): M = Mdp(F)}

o —

given by the functors N — N®m U(L)x and M — M[F].

Note that in general F' is not contained in .A. Note also that the hypothesis that
L-(f1,...,fr) = A" is equivalent to the existence of elements z1, ..., x, € L with
the property that z; - f; = 0;; for all 4, j =1, ..., r. Theorem B:2Z1lis a direct gen-
eralisation of [2, Theorem 4.10] to the setting where K is not necessarily discretely
valued and L satisfies the additional restrictions [£, £] C £ and £- A C mA. Note
that these restrictions are particularly mild because 7 is an unspecified non-zero
non-unit element of R, whose valuation, whilst positive, could be arbitrarily small.

For our next result, Lemma [3.2.3] we recall the following purely algebraic fact.
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Proposition 3.2.2. Let B be a filtered ring with filtration FeB. Let A be another
filtered ring with filtration FeA and f : A — B a filtered ring homomorphism of
degree zero (hence there is the associated graded ring homomorphism gr f : gr A —
gr B). Assume that the filtered rings B and A satisfy the following conditions:

(a) good filtrations on filtered left B-modules are separated,
(b) FoA has the left Artin-Rees property,

(c) the right gr A-module gr B is faithfully flat, and

(d) F_1A C J(FpA).
Then B is a faithfully flat right A-module.

Proof. This is [20, p. 75, Chapter II, Proposition 1.2.2]. O
Lemma 3.2.3. Let F = {f1,..., fr} C A be such that L-(f1,...,[f) = A", and let

——

C =Cr(F). Suppose that [L,L] C 7L and L- AC wA. Then U(L)k is a faithfully
flat U(C) g -module on both sides.

Proof. Note that when K is discretely valued, this is precisely [2, Corollary 4.3].
We will explain how to remove this assumption on K; also, we will only deal with

o — —

the faithful flatness of U(L)k as a right U(C) x-module, because the argument for
the other side is entirely similar.
We equip U(L)x with the m-adic filtration FoU(L)k: explicitly we have
an = 7r_"U/(Z) forall ne€Z.

—

We give U(C)k a similar filtration. With respect to these filtrations we have
(18) grm >~ k[t,t 7' @, U(Ly) and gr@ =~ k[t t 1 @5 U(Cr),
where L = L ®% k, and C; and Ay are defined similarly, and ¢ maps to the

principal symbol of 7. The inclusion C — £ induces by functoriality a filtered ring

homomorphism @ — m of degree zero. The required faithful flatness now
follows from Proposition B.2.2] once we’ve verified its hypotheses.

Since L - (f1,..., fr) = A", there exist x1, ..., , € L such that z; - f; = d;; for
alli, j=1,...,r. Now [2, Lemma 4.1] implies that these elements generate a free
A-submodule of £ that forms an .A-module complement to C in L:

L= Az ®cC.
i=1

(a) and (b) Our hypotheses on £ imply that C also satisfies [C,C] C 7C and
C-AC A Now in view of [4, Lemma 4.1.9], we see that both (a) and (b) in
Proposition have already been verified in the proof of [4, Proposition 4.1.7(a)].

(c) Since L is assumed to be a finitely generated projective A-module, it follows
that the A-module C also has this property. Hence Ly, and Cy, are both finitely gener-
ated projective Ai-modules. Hence gr U (L)) = Sym(Ly) and grU(Cx) = Sym(Cx)
by [22, Theorem 3.1]. Moreover, since we have the Ag-module decomposition

Ly = PAz o G,
i=1
we see that Sym(Ly) = Sym(Cy)[z1, - , 2] is iSomorphic to a polynomial algebra
over Sym(Cy) in r variables. It is therefore a gr-free and faithfully flat Sym(Cy)-
module. Now, using [20, Chapter I, Lemma 6.2(3)], we see that U(Ly) is a filt-free
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right U(Ci)-module. Therefore U(Ly) is a faithfully flat right U(Cy)-module, and
using (I8) we see that grU(L)k is a faithfully flat right gr U(C) x-module.
(d) This is clear, because FoU(Cr)x = U(C) is m-adically complete. O

Until the end of §3.2] we will assume that [£,£] C 7L and £ - A C 7 A, and

—_—

define Y :=U(L), U :=U(L)k and V := @ Unfortunately, the next step in
the proof of [2 Theorem 4.10], namely [2, Proposition 4.4], seems unlikely to hold
as stated. The problem is that the definition of U-lattice used in [2] seems to be
too strong. Fortunately, we do not need the full strength of [2] Proposition 4.4] to
continue with the proof.

Recall from [4, Corollary 4.1.10] that U is a Noetherian ring, and it is by con-
struction a K-Banach algebra. Therefore, by [27, Proposition 2.1], any finitely
generated U-module M carries a canonical Banach space topology.

Definition 3.2.4. Let M be a finitely generated U-module, and let M be a U-
submodule of M. We say that M is a weak U-lattice if it is the unit ball in M
with respect to some Banach norm on M which induces the canonical Banach
topology on M. If f € A, then we say that M is stable under divided powers of f
if M- f/n! C M for all n > 0.

In more algebraic terminology, we require M to span M as a K-vector space,
to satisfy Mg € M C 7 tMj for some ¢t > 0 and for some finitely generated
U-submodule Mg of M, and to be closed in the m-adic topology on M defined by
M. Note that any such weak U-lattice is automatically m-adically separated and
complete as an R-module. Our modified version of [2 Proposition 4.4] now reads
as follows.

Proposition 3.2.5. Let f € A be such that L - f C A and let M be a finitely
generated U-module. Then there is at least one weak U-lattice M in Map(f) - U
which is stable under divided powers of f.

Proof. Note that Mgy (f) - U is a finitely generated submodule of M because U is
Noetherian by [ Corollary 4.1.10]. The proof of [2, Proposition 4.4] now carries
over in a straightforward manner. O

Proposition 3.2.6. Suppose that F C A is such that L-F C A, and M is a finitely
generated U-module. Then Mg, (F) is a U-submodule of M.

Proof. The proof of [2, Proposition 4.5] works, provided we use Proposition
to construct and use a weak U-lattice M in Mq,(f) for any f € F. O

Note that if M is a finitely generated U-module then M[f] is a closed V :=
U(C) g-submodule of M, where C := C(f).

Lemma 3.2.7. Let f € A and x € L satisfy x - f = 1, and let M be a U-module.
Then for every qo, - .., qn € M[f], we have }7_, gz - % =q,.

Proof. This was shown in the proof of [2] Lemma 4.6]. O

Our next statement agrees precisely with [2] Proposition 4.7] when K is discretely
valued. Unfortunately the proof of [2| Proposition 4.7] as written relies heavily
on the Noetherianity of & and therefore does not extend to our current setting.
Fortunately, it is possible to rewrite the proof in a different way that does extend.
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Proposition 3.2.8. Let f € A be such that L - f = A and let M be a finitely
generated U-module. Then the natural U-linear map epr: M[f] @y U — M s
injective, and hence M|f] is finitely generated as a V-module.

Proof. Let £ = qu & ®u; lie in the kernel of ey for some &; € M[f] and u; € U.
Choose = € L such that - f = 1. Now, £ = C ® Az by [3, Lemma 4.1], so
U(L) is isomorphic to U(C)[z] as a left U(L)-module. Therefore we can write
u; = Z;io vl-jxj for some v;; € V such that v;; = 0 as j — oo for all ¢ = 1,

d. Define ¢; := Zle &vi; € M|[f] for each j = 0, and note that ¢; — 0 as j — oo.
Then Z;;O g’ = ch'l=1 & Z;;O vijr! — Zz:l §irup = em(§) =0asn — oo. We
will show that ¢ = 0 for any k& > 0.

Using Proposition we see that the image M[f] - U of epr is contained in
the U-module Mg, (f). Using Proposition B:2.5] choose a weak U-lattice M in
Map(f) = Mdp(f) U which is stable under divided powers of f. Fix r > 0; because
lim, o0 Z;‘L:O gjz’ = 0, we can find n > k such that Zj Oqjxj € " M. Since
7" M is stable under divided powers of f and the action of x, we see that

fn fk+1 k
Z%W <1——x) ~(1—<k+1)!xk+1> Few./\/l

It follows from Lemma [3.2.7] that the expression on the left hand side equals g.
Hence gy € 7" M for all k,r > 0. Since M is w-adically separated, g = 0 for all
k > 0 as claimed.

Let NV be the U-submodule of M[f]®y U generated by {£1®1,...,£4®1}. Then
for any n > 0 we have

d d n
f:Z§z’®uz‘ :Z§i® (sz‘jl’j+zvijfﬂj> Z%®IJ+Z&®ZUH$]
i1 =1

7=0 ji>n j>n

Since g; = 0 for all j and since ) ;- , vij#) — 0 in U as n — oo, we conclude that
£ en"N for all r > 0. Because N is a finitely generated U-module, it is m-adically
separated by [4, Proposition 4.1.6(b)]. Hence £ = 0 and €,/ is injective as claimed.

Finally, if Ny < N3 < --- is an ascending chain of V-submodules of M|f], then
em(NV1 @y U) < ey(Na @y U) < --- is an ascending chain of U-submodules of
M. This chain must terminate because M is a finitely generated module over the
Noetherian ring U — see [4, Corollary 4.1.10]. Since €ps is U-linear and injective
by the above, and since U is a faithfully flat V-module by Lemma B.2.3] we see
that the original chain Ny < Ny < - -+ must terminate. Hence the V-module M|[f]
is finitely generated. ]

Proof of Theorem B2l The remaining proofs in [2, §4.7, §4.8, §4.9, §4.10] do not
rely on the Noetherianity of U. The proof of [2, Theorem 4.10] now works: no
further changes are required. ]

3.3. Kashiwara equivalence for small (X,G). In §33] we specialise slightly
to the setting of untwisted D-modules, and extend the material in §3.2] to the
equivariant setting. Thus, let X be a smooth K-affinoid variety and let Y be a
smooth, Zariski closed subvariety of X defined by a coherent ideal sheaf . C Ox.
We assume that 7(X) admits a free A-Lie lattice £ = A0 @ - - - ® A9y for some
affine formal model A C O(X), and that I := #(X) admits a generating set
F:={f1,..., fr} such that 0;(f;) = 0;; whenever 1 <i<dand 1< j <.
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Let Z:=1NnAandlet Ne(Z) :={ve L:v-ICZ} be its normaliser in L.
Lemma 3.3.1. We have Np(Z) =201 @ -+ - D L0 ® ADpi1 D -+ B ADy.

Proof. Ifa € Z, thena = }_"_, a; f; for some a; € O(X) s0 0;(a) = >"i_; di(a;)f; €
I whenever i > r. Since a € A and 9; € L, we see that 9;(a) € A. So, ; € N.(T)
whenever ¢ > r. On the other hand, Z9;(Z) € ZA = T for all 4, and we have
established the D inclusion. Now let v € N (Z) and write v = Zle a;0; for some

a; € A. Choose a sufficiently large integer n such that 7" f; € Zforallj =1, ..., r.
Then v(7n™ f;) € T implies that 7"a; € I for all j =1, ..., r. Since I is a K-vector
space, we conclude that a1, ..., a. € [N A =1, as required for C inclusion. |

We write A := A/Z and N for the quotient (R, .A)-Lie algebra N (Z)/ZL. Note
that it follows from Lemma B3] that the image of {9y+1,...,94} in N forms a
basis for this A-module.

Now let G be a compact p-adic Lie group acting continuously on X, and assume
that Y ¢ X, A C O(X) and £ C T(X) are all G-stable. Note that A is a G-
stable formal model in O(Y) = O(X)/I, and by the functoriality of the normaliser
construction, A is a G-stable A-Lie lattice in T(Y) = O(Y)0,11 @ --- ® O(Y)0q.
We note in passing that even given the explicit description of normaliser N (Z)
by Lemma [3.3.1] it is not particularly nice as an A-module so the structure of its
enveloping algebra is not clear. However, it does admit a G-action which induces
a well-defined G-action on A/. In contrast, because it is not reasonable to expect
the generating set F' for I to be G-stable in general, there is no G-action on the
centraliser C'z(F') which played a key role in §3.21

Let p: G — Autg (O(X)) denote the action of G on O(X), and recall the sub-
group Gz = p~!(exp(p°L)) from [4, Definition 3.2.11]. By [4, Theorem 3.2.12], the
map 3 : G — U* given by B(g) = exp(t(log p(g))) for g € G is a G-equivariant
trivialisation of the G-action on U := m; here ¢ denotes the inclusion of £ into
the K-Banach algebra U. Let p : G — Autx O(Y) denote the action of G on O(Y),

—

let W := U(N)k and let 8 : G- — WX denote the corresponding G-equivariant
trivialisation; if a € O(X) we will write @ to denote its image in O(Y).

Lemma 3.3.2. We have Gz < Gyr. If g € Gz and a € O(X), then
Blg)-a=p5(g) - a.

Proof. Let g € Gz and let w € L be such that log p(g) = pu. Because Y is G-
stable by assumption, the automorphism p(g) : O(X) — O(X) stabilises the ideal
1. Since this ideal is closed, it follows that
o0
(-
pu mZ::l ——(p(9) - 1)
also stabilises I. Since I is a K-vector space, we conclude that «-I C I, and hence
u € Nz (Z). Now, the kernel of the natural map N, (Z) — T(Y) is equal to ZL, so
the image of Nz(Z) in T(Y) is isomorphic to N'= N.(Z)/ZL. Hence the image
wof uin T(Y) lies in AV, and on the other hand it satisfies log p(g) = p“u. So,

logp(g) = logp(g) € pN which implies that ¢ € Gxr. Finally, if ¢ € G, and
a € O(X) then 5(g) -@=p(g)(@) = p(g)(a) = B(g) - a as required. O

We will use the following abbreviations.
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Notation 3.3.3. Fix an open normal subgroup H of G contained in G.
(a) W:UTJ\FK%S::WN%G, and
(b) U=U(L)x — T:=U x5 G.

Note that it follows from [2, Lemma 5.1(d)] that O(Y) ®ox)U = U/IU is an
W — U-bimodule; hence

OY) ® T=(U/IU)®y T =T/IT
O(X)

is naturally a W — T-bimodule.

Proposition 3.3.4. The left W-action on (U/IU) @y T by right T-linear endo-
morphisms extends to a left S-action.

Proof. Recall that by [4, Definition 2.2.3 and Lemma 2.2.4], T' is a factor ring of the
skew-group ring U x G. The group G acts on U x G by left multiplication, and this
action therefore descends to a left G-action on T by right T-module endomorphisms.
The ideal IT is stable under this action because g - (ft) = (g - f)gt for all g € G,
feTlandteT, and because the ideal I in O(X) is G-stable by assumption. Thus
we obtain a left G-action on T/IT by right T-module endomorphisms. On the
other hand, the left W-action on U/IU is G-equivariant, in the sense that
g-(w-uw)=(g-w)-g-u forall geGweW,uel.

An easy calculation now implies that the right T-linear W and G-actions on T'/IT
combine to form a right T-linear W x G-action. It remains to check that this action
descends to the factor ring S =W x% Gof W xG.

Fix h € H, choose v € N.(Z) such that logp(h) = p‘v so that B(h) =
exp(p(v)) € W and B(h) = exp(p(v)) € U. The v-action on T/IT is given
by T (t+ IT) = [t(v),t] + te(v) + IT. An easy induction then implies that

m
T (4 IT) = Y (m> ad(1(0))*(£)e(v)™ " + IT
i—o \ "
for all m > 0 and all ¢t € T, and therefore

exp(pu(m) - (14 17) = 3° 3B <m> ad(o(0)) (1)e(0) ™ 4 IT

=0 j=0 i gt
= exp(p© ad(e(v))) (1) exp(pe(v)) + IT.
Now if t = a € O(X), then ad(c(v))(a) = v(a) and exp(p© ad(c(v)))(a) = p(h)(a) =
h-a, so B(h)-(a+ IT) = (h-a)B(h) + IT = h(a + IT). We conclude that
B(h) —h € W x G kills (O(X) + IT)/IT for all h € H. Because this set generates
T/IT as a right T-module, and because the action of W x G on T'/IT is right T-
linear, we see that S(h) — h kills all of T/IT. It follows that the left W x G-action

on T/IT descends to a well-defined S =W xg G-action, as required. |
It follows immediately from Proposition 334 that T/IT is naturally an S — T-

bimodule. Next, recall from [4, §2.2] that v : G — S* denotes the canonical group
homomorphism, and that by construction, S is a free left and right W-module with
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basis {y(c) : ¢ € C} whenever C is a set of coset representatives for the open normal
subgroup H of GG. Similar statements hold for the crossed product T'= U x% G.

Proposition 3.3.5. There is an isomorphism of S — U-bimodules

U ~ T
__%_

$SOTT T

given by {(wy(g) @) = w - (g - u)y(g)-

Proof. By Proposition [3.3.4] there is a well-defined S — T-bilinear action map S x
T/IT — T/IT, given by (wy(g),uy(h)) = w- (g-u)y(gh) for w € W, g,h € H and
u € U. By considering this formula in the case ¢ = h = 1, we see that the restriction
of this map to S x U/IU descends to S @y U/IU, and induces an S — U-bilinear
map

U~T
$S9TT T IT

as claimed. Let C be a set of coset representatives for H in G. If we again identify
T/IT with U/IU ®u T, then it follows from [4, Lemma 2.2.4(b)] that

S%ﬁ @7 ®— and ﬁ_@—@)V

For each ¢ € C, the restriction of £ to v(c) ® % sends it bijectively onto % ®(c).
Therefore £ is a bijection. ]

Now, the S — T-bimodule T'/IT from Proposition B:3.4] induces a functor N +—
N ®g T/IT from finitely generated right S-modules to finitely generated right
T-modules. Using the identification of the restriction of this bimodule to an S — U-
bimodule given by Proposition 3.5l we can prove the main result of §3.31

Theorem 3.3.6. Let X be a smooth K -affinoid variety and let Y = Sp O(X)/I be
a smooth, Zariski closed subvariety of X. Assume that:

(a) T(X) admits a free A-Lie lattice L = Ad, & --- & Ady for some affine
formal model A C O(X), satisfying [L,L] C 7L and L- A C A,

(b) the ideal I admits a generating set F := {f1,..., fr} such that 0;(f;) = &;;
whenever 1 <i<dand 1 <j<r

(¢) G is a compact p-adic Lie group which acts continuously on X and which
preserves Y C X, AC O(X) and L C T(X).

Let H be an open normal subgroup of G contained in Gz and write

S::UmKNgG and T::m{ng,

where N = 1\&2?{2 C T(Y). Then there is an equivalence of categories

"Coh(S) = {Me"Coh(T): M = My,(F)}
given by the functors N — N ®@gsT/IT and M +— Homy(T/IT, M).

Proof. Because G/H is a finite group, it follows from [4, Lemma 2.2.4(b)] that S
is a finitely generated W-module on both sides, and T is a finitely generated U-
module on both sides. Hence we obtain the following diagram of abelian categories
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and right-exact functors, where the vertical arrows are the restriction maps along
the inclusion of rings W — S and U — T

" Coh(S) —OsTIT " Coh(T)
" Coh(W) —— * Coh(U).

It follows from Proposition [3.3.5] and the Five Lemma that this diagram commutes
up to natural isomorphism: for every finitely generated right S-module N, there is
a right U-linear isomorphism

T U
Nemr = NP
which is natural in N. Let C := Cp(F) = A0p41 ® -+ ® Ady; it follows from

Lemma [B.37] that the natural map C/ZC — N is an isomorphism. Let V' denote
the K-Banach algebra U(C)k from §3.2 by the proof of [2, Lemma 5.8], there is
a natural isomorphism V/IV = W. So, if N € " Coh(S) then we may regard its

restriction to W as a finitely generated V-module killed by I, and then the right
U-module

4

T U
SIT T v

lies in " Coh(U) and satisfies M = Mqp(F') by Theorem B.2.11

Now suppose that M € " Coh(T) satisfies M = Mg, (F). On the one hand, its
restriction to U satisfies the same condition because it is phrased entirely in terms
of the action of FF C O(X) C U on M, and therefore Hom¢(T/IT, M) = M|I] is
a finitely generated right V-module killed by I by Theorem B2l In other words,
it is a finitely generated right W-module. On the other hand, it is a right S-
module because T/IT is a left S-module; hence it is per force finitely generated
as an S-module. So, the functors — ®g¢ (T/IT) and Homy (T /IT, —) restrict to an
adjunction between " Coh(S) and {M € " Coh(T') : M = My, (F)}, and it remains
to show that the unit and counit morphisms of this adjunction are isomorphisms.

To this end, let M € " Coh(T) satisfy M = Mgy,(F) and let M denote its
restriction to U. In the commutative diagram

€M

M1} ® 15 = M

%l €M

uing(sg ) Mg

1y n®§

the bottom horizontal arrow is an isomorphism by Proposition B:3.5] whereas the
top horizontal arrow is an isomorphism by Theorem [3.2.1] So the counit morphism
€ is an isomorphism; and a similar argument using Proposition 3.3.51and Theorem
32Tl shows that the unit morphism ny : N = (N ®g #5)[I] is also an isomorphism
for each N € " Coh(S). O

For future use, we record that the functor M +— M]|I] is compatible with locali-
sation to appropriately invariant affinoid subdomains X’ C X.
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Proposition 3.3.7. Suppose that X, Y, 1, A, L,G satisfy the hypotheses of Theo-
rem B36. Let X' be a G-stable affinoid subdomain of X such that O(X') admits a
G-stable and L-stable affine formal model A', and let L' == L @4 A'.

Let H be an open normal subgroup of G contamed n Gp, let S T be deﬁned
as in Theorem B30 and define S’ := U(N’)K ><1H G and T = U(C’)K ><1H G.
Then the natural map

o M[I]%)S’ — (MgT’)[I}

is an isomorphism for every M € " Coh(T') such that M = My, (F').

Proof. Note that £ is an A’-Lie lattice in O(X') and G, < G/ by [4, Proposition
4.3.6]. Let ' = #(X')N A and N' = N/(Z')/Z'L'; then it follows from Lemma
B3I that N = (A'/T") ® 4/z N so again G < G by [, Proposition 4.3.6]. This
means that the crossed products S’ and T’ are Well defined.

Write W = U(J\/)K7 W' = U(N’)K, U = U(E)K and U’ := U(ﬁ’)K By
the right-module version of [4, Proposition 4.3.11], there are natural isomorphisms
T = T ®y U of T — U'-bimodules and S’ = S @ W’ of S — W’ -bimodules.
These give isomorphisms v : M[I] ®5 8" — M[I] @w W' right W’-modules and
0: MerT' =M ®u U’ of right U’'-modules. Now the map « in question appears
in the following commutative diagram:

’ a®l ’
005 )@ iy — 2 (M r T [l &

7®1l lé@l

(M1} &w W) &w {7 (M @ U") 1] @
ul l€1\4®UU’
(MIew ) @u U —— My U

Here the second vertical arrow on the left is an isomorphism obtained by contract-
ing tensor products. Let M’ := M @y U’; because M = Mgy, (F), it follows from
Proposition that also M’ = Mép(F). So the maps €); and €5/ are isomor-
phisms by Theorem Since v and § are also isomorphisms, we conclude that
the top horizontal map a®1 is an isomorphism. Finally, the functor — @y U’ /IU’
is isomorphic to — ®y~ U’ where V/ = U(CZ(\F))K, and — ®y~ U’ reflects isomor-
phisms because U’ is a faithfully flat left V’-module by Lemma B2Z3l So « is an
isomorphism as required. O

Now let Uy, := U(T(”,C)K and W, :=U(rw "N)K, and choose a good chain H, for
H using [4, Lemma 3.3.6], so that H,, is an open normal subgroup of G contained
in Gyny for all m > 0. Then also H,, < Gynps for all n > 0 by Lemma [3:3.2] so we
may form the crossed products

T, :=U, xg, G and S, :=W, xg, G

as in Notation B33t we have omitted the trivialisations 3, : H, — U)X and f, :
H, — W} in the notation in the interests of clarity. Then by [4, Lemma 3.3.4] we
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have Fréchet-Stein presentations
D(X,G)=1imT, and D(Y,G)=limS,.

Lemma 3.3.8. O(Y)@O(X)ﬁ(X,G) is a D(X,G)-coadmissible (D(Y,G),
5(X, G))-bimodule.

Proof. Note that O(Y) ®ox) D(X,G) = D(X,G)/ID(X,G) is finitely presented
as a right D(X, G)-module, because the ideal I C O(X) is finitely generated. Hence

it is coadmissible as a right ﬁ(X, G)-module by [27, Corollary 3.4v]. We saw in the
proof of [2, Proposition 5.3] that 7\ is naturally isomorphic to Ny (Z)/(Z(7™L)).
Hence T,/IT, is an (S,,T,)-bimodule by Proposition B34l  Since %
= @TH/ITH, we conc}llde as ifl\ the proof of [2| Proposition 5.3] that it is a
D(X, G)-coadmissible (D(Y,G), D(X, G))-bimodule in the sense of [3| Definition
7.3]. O

Lemma 338 together with [3, Lemma 7.3] allows us to write down the equivari-
ant pushforward functor

L "C —"Ca N—N @ (O(Y) ® 5(X,G)>.

D(Y,G) D(X,G)’ BY.C) OX)

For future use, we record the following statement.

Proposition 3.3.9. Let N be an open normal subgroup of G. Then there is an
isomorphism of D(Y,G) — D(X, N)-bimodules

— D(X,N) = D(X,G)

D Y.G —_— —_—.
(19) ( ) B(Y,N) I()()'D(:X7 N) I(X)D(X, G)

Proof. Let H be an open normal subgroup of G contained in N N G, and write

W= UWK, U:= m and I := Z(X) as above.

Note that (U xg N)/I(U xg N) is naturally a sub (W x g N,U x g N)-bimodule
of (U xpg G)/I(U xg G). This gives us a natural map 0y ¢ of (W xg G,U xpg N)-
bimodules which appears as the top horizontal map of the following diagram:

(U x5 N) On.c (Uxp G)
(W xp G)@w xy N I(Ux;i, N) I(Uih,{, )
1®£H,NT: ZT&{,G

(Wxh G)@w sy v (Wxa N)@w 1) ——=—— (W xu G) @w 157

Here the vertical isomorphism on the left comes from Proposition applied to
the groups H < N, the vertical isomorphism on the right comes from Proposition
3.3.5 applied to the groups H < G and the horizontal isomorphism on the bottom
comes from contracting tensor products. It is straightforward to verify that the
diagram is commutative, and therefore 0y ¢ is an isomorphism.

Next, because N is an open subgroup of G, we can assume that the open normal
subgroups H,, of G that were chosen above just before Lemma[3.3.8 are all contained
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in N, by passing to a subsequence. Then the above produces isomorphisms of
(W, %, G,U, xg, N)-bimodules
(U n Xu, N )

o (Up g, G)
0 : n T o N) U, %y G)
H,,G W, I?an @) W, S{F’In N I(U, xg, N) - I(Un xm, G)

R

that are compatible with variation in n. Passing to the limit as n — oo we obtain
the required isomorphism (9]). O

Next, we extend [2, Definition 5.5] to an appropriate more general setting.

Definition 3.3.10. Let A be a commutative Fréchet algebra, let M be a Fréchet
A-module and let m € M. We say that s € A acts topologically nilpotently on m if
msk — 0 as k — oco. If S C A, we let M (S) denote the subset of M consisting of
all vectors m € M such that each s € S acts topologically nilpotently on m.

With this definition, [2] Lemma 5.5, Corollary 5.5 and Proposition 5.6] are in
fact valid for any Fréchet O(X)-module.

Proposition 3.3.11. Let M be a coadmissible right D(X, G)-module. Then My (I)
is also a coadmissible right D(X, G)-module.

Proof. This is a direct generalisation of [2 Corollary 5.6]. The key point is that
it M, = M ®5x.) T,, then M. (I) = l&an[I] by [2, Proposition 5.6], and
each M, [I| 2 Homr, (T,,/IT,, M,) is a T,,-submodule of M,, by Proposition B34
Now M, is a finitely generated T,,-module because M is coadmissible, and T,, is
Noetherian, being a crossed product of the Noetherian ring U,, — see [4, Corollary
4.1.10] — with the finite group G/H,,. So M,[I] is a closed submodule of M,, by
[12, Lemma 1.2.3] for each n > 0, and therefore M (I) is a closed submodule of
M. Tt is hence coadmissible by [27, Lemma 3.6]. O

Our next result, a generalisation of [2, Theorem 5.7], allows us to write down a
right adjoint ¢f to the pushforward functor ¢..

Proposition 3.3.12. Let M be a coadmissible right ﬁ(X, G)-module. Then M|I]
is a coadmissible right D(Y, G)-module.

Proof. Since Moo (I) C M, we see that M (I)[I] C M[I]. On the other hand, any
v € M[I] lies in M, (I) because any f € I kills v and therefore acts topologically
nilpotently on v. Hence M[I] = Mo (I)[I]. Since M (I) € CB(X &) by Proposition
B3T11 we may therefore assume that M = M, (I). Let M,, = M ®§(X &) T, for
each n > 0. As in the proof of [2, Theorem 5.7], using Proposition we see
that M = Mo (I) implies that M,, = (M,)ap(F/7™). Therefore by Theorem
applied to F//7™ and ©"™ L, the right S,,-module M, [I] is finitely generated, and the
counit morphism

T,

is an isomorphism for all n > 0. Next, the T}, 1-linear map M,,+; — M, induces

an Sp41-linear map M, +1[I] — M,[I] and an S,-linear map

On: Mya[I] ® Sy — M|

Snt1
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which features in the following commutative diagram:

o~

(Mp41ll] © S")g@ e —— (Mp[I] ® —IT"“) ® T,

n
n

T,
n41 I Y

en+1®1

Ppn®1 Mn+1 ® T,
Tht1
an

T,
M, [I] g@ i = M,

The map «,, is an isomorphism because M is a coadmissible 5(X, G)-module, so
wn ® 1 is also an isomorphism since €, and €,1 are isomorphisms. The functor
— ®s, 72 is an equivalence on " Coh(S,) by Theorem B3] so ¢, is an isomor-
phism. Therefore M[I] = L&an[I] is a coadmissible right D(Y,G) = lim S, -
module. (]

We can now state and prove the second main result of §3.3

Theorem 3.3.13. Let X be a smooth K-affinoid variety and let Y = Sp O(X)/I
be a smooth, Zariski closed subvariety of X. Assume that:

(a) T(X) admits a free A-Lie lattice L = Ad, @ --- ® A0y for some affine
formal model A C O(X), satisfying [L,L] C 7L and L - AC A,

(b) the ideal I admits a generating set F :={f1,..., fr} such that 0;(f;) = d;;
whenever 1 <i<dand1<j<r,

(¢) G is a compact p-adic Lie group which acts continuously on X and which

preserves Y C X, A C O(X) and L C T(X).

Then the equivariant pushforward functor

o oy — {M € Chix gy M = Moi(l)},
N = N ®6(ng) (O(Y) ®O(X) D(Xv G))

is an equivalence, with inverse 1% : M — M.

Proof. The functor ! preserves coadmissibility by Proposition B:3.12 and using
the proof of [2, Theorem 5.9(c)] together with Theorem B30l we see that ¢ N =

(t4+N)oo(I) for any N € TCB(YG). Now we can use the proof of [2] Theorem 5.9(b)]

and the universal property of ® to see that /! is right adjoint to . To show that
this adjunction is in fact an equivalence, by [2, Proposition 4.10] it will suffice to
show that the counit is an isomorphism and that ¢, reflects isomorphisms. But
both of these statements follow from Theorem O

For future use, we record the equivariant analogue of [2, Theorem 6.9].

Proposition 3.3.14. Let X, Y, A, L, F and G be as in Theorem B.3.13l Let X' be
a G-stable affinoid subdomain of X and let Y' :=Y NX'. Then the natural map

M7/ (X)] _® DY,G) — (MA@ 73(X’7G)> [7(X")]
D(Y,G) D(X,G)
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is an isomorphism for every M & TCB(X & such that M = My (& (X)).

Proof. By applying [3| Proposition 7.6] and [4, Lemma 4.3.5], we may assume that
O(X') contains an L-stable and G-stable affine formal model A’; then £’ := A'®@ 4 L

is a G-stable A’-Lie lattice in 7(X’). Let U, := U@K and U], := U(W)K for
each n > 0 and note that Gz < Grnper by 4 Proposition 4.3.6(b)]. Choose a good
chain (H,) for £ in H and for each n > 0 consider the ring maps T}, := U, xg, H —
T, := Ul xpg, H,so that T := D(X,G) = hm T, and T" := DX, @) = Wm 77 by
[, Lemma 3.3.4]. Define S := D(Y,G) and S := D(Y',G) so that S = im S, and
S = an S/ for appropriate crossed products S, and S}, as in Proposition B3 Let
I:= .#(X). Then (M @7 T")[#(X")] = (M @7 T")[I] because .7 (X') = O(X') - I,
and the map in question

M[I@S’ — (MEET’)[I]

is the inverse limit of the natural maps

where M,, := M ®r T), for each n > 0. As in the proof of [2, Theorem 5.7], using
Proposition B:2.0] our assumption M = M (I) implies that M, = (M,)ap(F/7")
for each n > 0. So these maps are isomorphisms by Proposition [3.3.7] |

3.4. The equivariant Kashiwara equivalence. Let Y be a smooth, Zariski
closed subset of the smooth rigid analytic space X defined by the vanishing of a
radical, coherent ideal .# of Ox, and let ¢+ : Y < X be the inclusion of Y into X.
Let G be a p-adic Lie group acting continuously on X and stabilising Y.

We begin by constructing the equivariant pushforward functor

Lyt TCy/G — TCx/G

for G-equivariant right D-modules. We will work with the following slightly more
restrictive version of the basis for the topology on X introduced in [2] §6.3].

Definition 3.4.1.

(a) Let B denote the set of connected affinoid subdomains U of X such that
(i) 7(U) admits a free A-Lie lattice £ = A0y & - - - @ Ay for some affine
formal model A C O(U), satisfying [£,£] C 7L and L- A C 1A,
(ii) either Z(U) = Z(U)? or Z(U) admits a generating set {fi,..., fr}
such that 0;(f;) = 0;; whenever 1 <i<dand 1< j<r.
(b) For each U € B we say that a compact open subgroup H of G is U-good
if for some choice of the data A C O(U) and £ C T(U) satisfying the
conditions in (a), H stabilises U C X, A C O(U) and £ C T(U).

It is clear that if U € B then gU € B for all g € G.

Lemma 3.4.2.

(a) B is a basis for the topology on X.
(b) For each U € B we can find at least one U-good subgroup H of G.
(c) Let U € B and let H be U-good. Then N(UNY) is a coadmissible right

—

D(UNY, H)-module for every N € "Cy -
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Proof. (a) Because X and Y are both smooth, the second fundamental sequence
is exact by [8, Proposition 2.5] so the normal bundle Ny/ x is locally free and the
canonical map ¢*7T — Ny, x is surjective. Now [2, Theorem 6.2] tells us that we
can find an admissible affinoid covering {X,} for X such that for each «, either
I(X,) = Z(X4)? or there is an O(X,)-module basis {1, ...,04} for T(X,) and
a generating set {f1,..., f,} for Z(X,) with 1 < r < d such that 0; - f; = &
whenever 1 < i < dand 1 < j < r. Because X is smooth, we can replace each
X, by its finite set of connected components and thereby arrive at an admissible
covering with the same properties, but where in addition every X, is connected.
Let A, = O(X,)° for each o and let £, := ®¢_;7A,0;. Then both conditions (i)
and (ii) above are satisfied.

(b) Because G acts continuously on X, the stabiliser H; of U in G is open by
[4, Definition 3.1.8(a)] and any affine formal model A C O(U)° is stabilised by
an open subgroup Hy of Hy by [4, Definition 3.1.8(b)]. Then every .A-Lie lattice
L C T(U) is stabilised by an open subgroup Hs of Hy by [4] Lemma 3.2.8(b)], and
we may take H to be any compact open subgroup of Hs.

(c) It follows from Lemma B3] that the pair (UNY, H) is small in the sense of
[4, Definition 3.4.4]. Now apply the right-module version of [4, Theorem 4.4.3]. O

Using Lemma 342 c), Lemma 338 and the right-module version of [3] Lemma
7.3], we can now make the following construction.

Definition 3.4.3. Let N € "Cy/¢, let U € B and let H be U-good. We define

M[U,H] = N(UNY) ® _D.H) _
’ by Z(U)D(U, H)

this is a coadmissible right D(U, H)-module.
This construction is functorial in the following sense.

Lemma 3.4.4. Let V. C U be members of B and let H < N be compact open
subgroups of G which are U-good and V -good.

(a) There is a natural commutative diagram of right 5(U, H)-modules

(20) M[U, H] —= M[U, N]

l l

MV, H] —> M[V, N].
(b) For every g € G there is a K-linear map
gU.m = M[U, H] — M[gU,gHg™"]
such that for every a € D(U, H) and every m € M[U, H], we have

9. (m-a) = g g(m) - gu,m(a).
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(¢) The following diagram is commutative for all g € G:

(21) MU, H) " MgU, gHg )
M[U, N] i M[gU,gNg™'|
MV, N] : M[gV,gNg™].

Proof. We give the construction of g{}{ y and leave the rest to the reader. By
construction, the K-algebra homomorphism gy g : 5(U,H) — 5(gU,gHg*1)
from [4 Lemma 3.4.3] restricts to ¢©(U) : O(U) — O(gU) which sends Z(U) to
Z(gU) because Y is assumed to be G-stable. So the map

—— D(U,H) D(gU,gHg™!)
Jug: —=—"— — = .
Z(U)D(U, H) Z(gU)D(gU,gHg ™)
is well-defined and we can set g{‘j{H = gN(U nY) ® gu.H- U

Using the connecting maps M[U, H] — M[U, N|, we can make the following

Definition 3.4.5. Let N' € "Cy ¢ and let U € B. We define
(1 N)(U) = lim M(U, H),
where the limit is taken over all U-good subgroups H of G.

Lemma 3.4.6. 1. N is a G-equivariant presheaf of D-modules on B.

Proof. This follows from Lemma B4 — see the proof of 4, Theorem 3.5.8] for
more details in a similar situation. ]

Proposition 3.4.7. Let U € B, let H be a U-good subgroup of G and let N be
an open normal subgroup of H. Then for every N' € "Cyq, the canonical map
MU, N] — M[U, H] is an isomorphism.

Proof. Let V:=UNY. By Proposition B.3.9 there is an isomorphism

—_ —_

D(V.H) @ _pO.N) = _DUH

pw.n)  Z(U)D(U,N) Z(U)D(U, H)
of ﬁ(V, H) - 5(U, N)-bimodules. Now apply the functor N(V)@B(V )~ to this
isomorphism to see that the arrow M[U, N] — M[U, H] is bijective. O

Corollary 3.4.8. Let U € B, let H be a U-good open subgroup of G and let
N € "Cyq. Then the canonical map (14 N)(U) — M[U, H] is an isomorphism,
and (.+N)(U) is a coadmissible right 5(U,H)—module.

Proof. Let J be an open subgroup of H and choose an open normal subgroup N
of H contained in J. The maps M[U, N] — M[U, H| and M[U,N] — MU, J]
are isomorphisms by Proposition B 47 Therefore M[U, J] — M[U, H] is also an
isomorphism for every open subgroup J of H, and the result follows. |
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Proposition 3.4.9. Let N' € "Cyq, let U € B and let H be a U-good open
subgroup of G. Then there is a natural continuous H-D-linear isomorphism

-~

PO (1N (U) =5 (14 M))u, -

Proof. Note that (14 N)(U) = M[U, H] is a coadmissible right ﬁ(U, H)-module by
Corollary [3.4.8] so it will be enough to exhibit a continuous H-D-linear isomorphism

-~

o : PO (MU, H]) =5 (1, N)u,, -

Let V be an open affinoid subdomain of U and let J be an open subgroup of Hy .
Then there are natural right D(V, J)-linear isomorphisms

M[U,J] ® D(V,J)

D(U,J)
— D(U,J —~ =
~2NUNY) ©® # ® D(V,J)
puny,n \Z(U)D(U,J) b,
_ D(V,J
~2NUNY) ® #
puny,n Z(V)D(V, J)
~ = — D
g(N(UmY) ® D(VﬁY,J)) ® M
D(UNY,J) pvny,r) Z(V)D(V, J)
~nvny) & -2V g,

pvny) Z(V)D(V, J)

where the isomorphism on the last line follows from the isomorphism

"Locgry ) W (UNY) = Muny
given by the right-module version of [4, Theorem 4.4.3] and by the fact that A €
"Cy /. Because the canonical map M[U,J] — M[U, H] is an isomorphism by
Proposition [3. 4.7 we obtain a right 5(\/'7 J)-linear isomorphism
o(V,J): M[U,H] ® D(V,J) — MIV,J.
D(U,J)
Denote the left hand side by M[U, H|(V,J) following [4, Definition 3.5.1]. We

leave it to the reader to verify that the following diagram

©(V,gJg™")

M[U,H)(gV,gJg™") M[gV,gJg™"]
/ . \
M[U, H|(V,J) M[V,J]
M[U. H|(W.J) — MW, J]
M[U, H|(V, N) M[V,N]

»(V,N)
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is commutative, for any H-stable open affinoid subdomain W of V, any open
subgroup N of Hy containing J, and any g € G. In view of the right-module
version of [4, Definition 3.5.1] and Definition B:43] passing to the inverse limit over
all open J < Hvy induces a continuous right D(V)-linear isomorphism

~

p(V) : PO (MU H) (V) = (14 N)(V),

The commutativity of the diagram above implies that these maps patch together
to define the required continuous H-D-linear isomorphism

~

¢ : PO (MU, H]) =5 (13 N)u,- m
Corollary 3.4.10. ;N is a sheaf on B whenever N € "Cy /.
Proof. Use [, Theorem 3.5.11], Corollary B:4.8 and Proposition [34.9 O

Using [3, Theorem 9.1], we can make the following

Definition 3.4.11. We define ¢y N to be the unique extension of the sheaf ¢ A
on B to a G-equivariant sheaf of D-modules on X,4,.

We can now record the equivariant generalisation of [2, Proposition 6.4].
Proposition 3.4.12. N — 1, N defines a functor vy : "Cy,c — TC;((/G.

Proof. By LemmaB.42a) we can find an admissible covering {X;} for X by mem-
bers of B, and by Lemma [BZ2(b), for each j we can choose an X,;-good subgroup
Gj of G. Let Y; := X; NY; then (Y,,G,) is small so by [4, Theorem 4.4.3] for
each j there is a continuous right D — G-linear isomorphism

A/'IYj ~ T LOC?EYJ ,Gy) N(Y])
Proposition B4 now implies that for each j there is an isomorphism of locally
Fréchet Hj-equivariant right D-modules

(X;,G;) ((e4N) (X)) -

~ D
(L N)x, = 7"Locxj

In view of Lemma [B.4.6] Corollary B.4.10] and Definition B.4.11] this means that
14N € "Cx;g. The functorial nature of ¢y is clear. Finally, note that if U is
an affinoid subdomain of X such that UNY = @, then Z(U) = O(U) and it
follows directly from Definition B43] that M[U, H] = 0 for any U-good subgroup
H. Therefore (1 N)(U) = 0 for any such U by Definition 345 which means that
the restriction of t; N to X — Y is zero. Hence ¢t N € TC;g/G as claimed. O

Next, we construct the equivariant pullback functor
Lh : TC)Y{/G — TCy/g.

Recall from [2, §A.1] that :~! denotes the pullback functor from abelian sheaves on
X.ig to abelian sheaves on Yig.

Definition 3.4.13. Let M € TC;((/G. We define t!M := 1= (14 M) where 1M is
the extension to X,y of the sheaf 1AM on B given by
(LEM)(U) := M(U)[#(U)] forall Ue€B.
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Note that (2 M is a presheaf of ¢, Dy-modules on B; the proof of [2, Lemma 6.5]

shows that it is in fact a sheaf. Because t,Dy is supported on Y, M is also
supported on Y and by [2, Theorem A.1] there is a natural isomorphism

Ly (P M) = dM.
We will need the following generalisation of [2, Theorem 6.7].

Proposition 3.4.14. Suppose that X € B and that G is X-good. Then the follow-
ing are equivalent for M € "Cx q:

(a) M is supported on'Y,

(b) M(X) = M(X)oo([-#(X)])-

Proof. The proof of [2, Theorem 6.7] reduces udd to showing that for any non-zero
f € #(X), the module M(X(1/f)) is zero if and only if f acts locally topologically
nilpotently on M(X). Our assumptions on X and G allow us to choose a G-stable
affine formal model A C O(X) and a G-stable A-Lie lattice £ C T(X). By rescaling
L and applying [3, Lemma 7.6(a)], we may assume that £ - f C A.

Let X' := X(1/f), let H := Gx/, write T := D(X, H) and T' := D(X’, H).
Let M := M(X) € "Cy and M’ := M(X’') € "Cys so that M’ = M®¢T' by

[4, Theorem 4.4.3]. Let A" := A(1/f) and L' := A’ ® 4 L and set U,, := U@K
and U} = U(n"L')k for each n > 0. Choose a good chain (H,) for £ in H and
set T), := Uy, xg, H and T} := U], xg, H for each n > 0, so that T = Jm T, and
T = @T,’L by [4, Lemma 3.3.4]. Let M,, := M ®¢ T, and M, := M' @ T} for
each n > 0. Using the isomorphism T, =~ T, ®y, U/ of T, — U} -bimodules coming
from the right-module version of [4, Proposition 4.3.11], we obtain
M =2(MITYRT, =MT, =M, ®T,=M, @U, forall n>0.
T T T T Un

Now we argue as in the proof of [2, Corollary 6.6]: M’ = M(X(1/f)) is zero if and
only if M} = M,, ®y, U/ is zero for all n > 0, if and only if f acts locally topolog-
ically nilpotently on M4 for all n > 0, if and only if f acts locally topologically
nilpotently on lim M, . But MIX)=M= lim M, by [27, Corollary 3.3]. O

We can now construct our equivariant pullback functor.

Theorem 3.4.15. Let M € TC;Q/G. Then 1! M € "Cy G, and this defines a functor
g TC;((/G —  "Cy/a-

Proof. The proof of 2 Lemma 6.5] shows that (:4M)(U) := M(U)[.#(U)] holds
for every affinoid subdomain U of X. Because M € "Cx,q is locally Fréchet,
M(U) is a Fréchet space for each U € X,,(7). Since .#(U) is finitely generated
as an O(U)-module, it follows that (12M)(U) is a closed subspace of M(U) and
therefore itself carries a natural Fréchet topology; thus UM s a locally Fréchet
D-module on X in the sense of [4, Definition 3.6.1] applied with G = 1.

Let g € Gandlet U € X, (7). Ifa € #(gU) then (¢°)~*(a) € #(U) because Y
is G-stable, so a-g™(m) = g™ ((g®)~!(a)-m) = 0 for all m € M(U)[.#(U)]. Thus
g™ maps M(U)[.#(U)] into M(gU)[.# (gU)], and we can therefore define gLiM(U)

3Use [, Theorem 4.4.3] in place of [3 Theorem 9.4].
4By [2} Proposition 6.6].
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to be the restriction of g™ (U) to (:2M)(U) € M(U). Being the restriction of the
continuous map g™ (U), gLiM(U) is continuous. We leave it to the reader to check
that in this way Li./\/l becomes a G-equivariant ¢,D-module on X. It follows that
1! M is a locally Fréchet G-equivariant D-module on Y.

Because of the local nature of "Cx,; — see [l Definition 3.6.7] — as in the
proof of [2, Theorem 6.10(a)], we can now reduce to the case where X € B and G
is X-good in order to show that .*M € "Cy . Let T := ﬁ(X, G), S = 5(Y, G),
M = M(X) and I := #(X); then M € "Cp by [4, Theorem 4.4.3] and therefore
MII] € "Cs by Proposition Let X’ be an affinoid subdomain of X, write
Y’ := X’'NY and choose any open subgroup H of Gx. Because M is supported on
Y, we know that M = M (I) by Proposition B 4T4l Then by Proposition B:314]
the natural right D(Y’, H)-linear map

-~ -~

M7(X)]_® DY,H) — (M ® 23(X’,H)> (7 (X')]
D(Y,H) D(X,H)

is an isomorphism. These maps are compatible with variation in H < Gx/; passing
to the limit over all such open subgroups H induces a D(X’)-linear isomorphism

o

TPy (MII)(Y') — "Px(M)(X')[7 (X))

which is automatically continuous by [4, Lemma 3.6.5]. We leave it to the reader
to verify that these maps are in turn compatible with restrictions to affinoid sub-
domains X” C X’ as well as with the G-action. They therefore assemble to give a
right D-G-linear isomorphism of sheaves on X,,

o

0P (M) — "Px (M)[7 (=),

and then by [3, Theorem 9.1], to a continuous right Dx-G-linear isomorphism
1" Locy (M[I]) = 10" Lock (M)

and hence by [2, Theorem A.1], to a continuous right Dy-G-linear isomorphism
Loc§ (M[I]) = 1# (" Lock (M)) .

Because M 2 " Lock (M) by [4, Theorem 4.4.3], we conclude that (*M € "Cy/a-
The functorial nature of M — 1* M is clear. O

The classical definition of the direct image for D-modules is easier to define for
right D-modules — see, for example, [I5, p. 22]. It is for this reason that we
establish the Kashiwara equivalence for right D-modules in the first instance, and
then deduce the Kashiwara equivalence for left D-modules.

Here is our Kashiwara equivalence for equivariant right D-modules.

Theorem 3.4.16. Let v : Y — X be the inclusion of a smooth, Zariski closed
subset Y into the smooth rigid analytic space X. Let G be a p-adic Lie group
acting continuously on X and stabilising Y. Then the functors

Lyt 7nC’y’/G — TC;({/G and Lh : TC)Y;/G — TCY/G

are mutually inverse equivalences of categories.
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Proof. The functors ¢4 and % were constructed in Proposition and Theorem
[B.4.T15 respectively. We will first show that ¢ is left adjoint to ¢%; to this end, fix
N € "Cy,q and M € "Cx ¢, and using Lemma B.Z2(b), for each U € B choose a
U-good open subgroup H(U) of G. [3, Theorem 9.1] gives us an inclusion

Homrey g (64N, M) = T] HomB) s m ) ((6+:M)(U), M(U))
UeB

whose image consists of all tuples (ay)uep that commute with the restriction and
G-equivariant maps in ¢4 N and M. Similarly, by [2, Theorem A.1] and [3, Theorem
9.1] there is an inclusion

HOHITCY/G(Na LhM) — H Hom%?UmY)xH(U) (N(U ny), (LEM)(U))
UeB

whose image consists of all tuples (Su)uecp that commute with the restriction and

G-equivariant maps in ¢, N and M.
Fix U € B, write V:=UNY, N := N(V), M := M(U), H := H(U) and
I := Z(U) so that (:2M)(U) = M[I]. By Corollary B, there is a bijection
(22)  Hompiy)um ((L+N)(U), M(U)) = Hompy) oy (M[U, H], M).
Now M[U, H] is a coadmissible right D(U, H)-module by Definition B3, whereas
M is a coadmissible right D(U, H)-module by [4, Theorem 4.4.3], so
(23) Hom%?U)xH (M[Ua H]a M) = HOIIIB(U,H) (M[Ua H]v M)
and similarly it follows from Proposition that

(24)  Hompiunyywn (N(UNY), ((EM)(U)) = Homg,, . (N, M[I]).

Now, as in the proof of [2] Theorem 6.10(b)], we can define

Oy : Homﬁ(U_’H) (M[U,H|,M) — HomB(V)H) (N, M[I])

by the formula ®y(a)(z) = a(z®1) for all z € N. Then ®y is injective because
MU, H] is generated by the image of N as a right f)\(U,H)—module7 and the
universal property of @ implies that it is in fact bijective. Combining ®y with the
bijections ([22)), 23]) and (24]) gives us a canonical bijection

Hom$Byy y g (uy (14 M) (U), M(U)) %Hom%?UmY)xH(U) (NV(UNY), (LEM)(U))
and therefore a bijection
Ul;[B Hompty) s (v ((1+:M)(U), M(U))
=] qful

1R

uesB

g HomS$yryyw s (w) (MN(UNY), ((EM)(U)).

We leave it to the reader to check that ¥ and ¥~! send morphisms of G-equivariant
sheaves to morphisms of G-equivariant sheaves. Thus we obtain a bijection

U : Homrey (14N, M) = Hom-c, (N, M.

It can also be checked that ¥ does not depend on the choice of U-good open
subgroups H(U), and that it is functorial in V' € "Cy /¢ and M € "Cx /.
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We can now use [2, Proposition 4.10] to conclude that in fact these two functors
are mutually inverse equivalences of categories. To do this, follow the proof of [2
Theorem 6.10(c)], replacing [2, Theorem 6.7] by Proposition B4 T4 and |2, Theorem
5.9(c)] by Theorem B3T3 O

We can now finally prove the Kashiwara equivalence, Theorem Bl for equivariant
D-modules on rigid analytic spaces.

Theorem 3.4.17. Let + : Y — X be the inclusion of a smooth, Zariski closed
subset Y into the smooth rigid analytic space X. Let G be a p-adic Lie group
acting continuously on X and stabilising Y. Then the functors

Lyt CY/G — C)Y('/G, N — }[omox (QX7L+(QY (S@ N))

Y
and
FiCX e = Cyja M Homo,, (Qy, f (Qx(ga M))
X
are mutually inverse equivalences of abelian categories.

Proof. This follows from Theorem B.1.15and Theorem B.4.16 once we observe that
the side-switching functors preserve the condition of being supported on Y. (I

We conclude §3] by using various parts of the proof of Theorem [Bl to give the
following interesting example.

Example 3.4.18. Theorem [A] may fail if the regularity assumption (c) on the
G-orbit of Y is omitted.

Proof. Let X = Sp K(z,y) be the two-dimensional affinoid polydisc, let Y :=
V(y) C X be a Zariski closed subset of dimension 1 and let Z := V(z,y) C Y be a

closed point inside Y, so that we have Z C Y C X. Let G := (g) be a pro-p-cyclic
group acting on X via the rule
g* - (a,b) = (a,b+pra) forall \€Z,.

Z is a G-stable subset of X, however Y is not G-stable and in fact its stabiliser Gy
is trivial: if g* stabilises Y then g*-(1,0) = (1, pA) must lie in Y which forces A = 0.
All conditions of Theorem [Alare satisfied for (X, Y, G), except for (¢): since Z C'Y
is G-stable, it is contained in the intersection of any two distinct G-translates of Y.

Let k : Z — X be the closed embedding. Since Z is just a single G-stable point,

the algebra f)\(Z7 G) is isomorphic to the algebra of smooth distributions D> (G, K).
Using Proposition B.4.12] we can now form the object

M=k, (" LOCZ(Z’G)) € TC)Z(/G.

Since Z C Y C GY, we can also view M as being an object of Tcgfg. We claim
that H$ (M) fails to lie in C;((/Gy.

Since M is already known to be supported on Z C Y, we have Hy, (M) = M as a
locally Fréchet D-module on X. Suppose for a contradiction that H (M) € C;g /Gy
Then M € Cx because Gy = 1, and M := M(X) has to be a coadmissible right
ZA?(X)—module by the right-module version of [4, Theorem 4.4.3]. Let I := .#(X) =
(z,y) be the ideal of Z in O(X). Because M is supported on Z, we know that
M = My[I] by Proposition B.4AT4l Then M[I] has to be a coadmissible right
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ZA?(Z)—module, by Proposition applied with G = 1 and with Z in place of Y.
Since Z is a single point, D(Z) = K and coadmissible D(Z)-modules are necessarily
finite-dimensional K-vector spaces. However, by Definitions and 3:4.3]

bz [-DX,G) 1-DX,G)

M =~ M[X,G] ~D(Z,G)

We can now use Theorem B33 to see that M[I] = D(Z,G), which is not a finite-
dimensional K-vector space because G is an infinite group. ([l

Note that in Example B4 the triple (X,Y, &) satisfies the LSC by Corol-
lary Z5I8 Since HY (M) fails to lie in C;((/Gy, this shows that the G-regularity
condition on Y cannot be omitted from either Theorem 2.5.7 or Theorem Z.4.7]

Remark 3.4.19. In fact, the induction functor indg : Cx/p — Cx/¢ is not an
equivalence of categories in general, because it fails to preserve simple objects. In
Example B.4.18] the side-switch M’ of M is isomorphic to ind?(/’@r K), where k4 K
is the non-equivariant delta-function supported at Z. Writing R := ﬁ(X) and
S := D(X,G), we have (k4 K)(X) = R/(Rx + Ry) is a simple R-module by the
Kashiwara equivalence, Theorem [Bl However, M'(X) = S ®g (R/(Rz + Ry)) =
S/(Sx + Sy) admits S/ (S(g — 1) + Sz + Sy) as a proper non-zero quotient and
therefore fails to be a simple S-module.

4. EXAMPLES OF REGULAR ORBITS OF POSITIVE DIMENSION

4.1. The twisted cubic. Throughout §4.1] all algebraic varieties are assumed to
be defined over an algebraically closed base field k. Following the traditional abuse
of notation, we will confuse them with their corresponding sets of k-points.

We assume throughout that G is an affine algebraic group acting morphically on
a projective variety X, and that Y is a Zariski closed subset of X.

Definition 4.1.1. We define the intersection obstruction of Y to be
Zyi={geG:YNgY #0}.

It is clear that Zy contains the stabiliser Stabg(Y) of ¥V in G, and Zy =
Stabg(Y) if and only if the G-orbit of YV is regular in X in the sense of Defini-
tion ZT.8

Lemma 4.1.2. Zy is a Zariski closed subset of G.

Proof. Let a: Gx X — X be the action map, and let Y := (G xY)Na~(Y). Then
Y is a Zariski closed subset of G x X, and since Y = {(g,9) eGxY :g-yeY}
we see that the image p(Y) of Y in X under the projection map p: G x X — G
is exactly Zy. Since X is a projective variety, its structure map X — Spec(k)
is proper by [13, Theorem I11.4.9], so in particular it is universally closed. So by
[13, Definition on p.100], the projection map p : G x X — X is closed, and therefore
p(Y) = Zy is closed in X. O

Definition 4.1.3. We define the core of the intersection obstruction to be

Zy = ﬂ gZyvg L.
geq
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This is a union of conjugacy classes in G' and one might hope this core to be just
{1}, at least when the group G is simple. Unfortunately, this is not true in general
as our next results show.

Proposition 4.1.4. Suppose that G = GL,4+1(k) acting naturally on X = P"(k)
and that dimY > 1. Then h € Zy whenever h € G and tk(h — 1) < 1.

Proof. By passing to an irreducible component of Y of positive dimension, we
may assume that Y is irreducible. Let W = k"™ and A = Sym, (W), so that
P* = Proj(A) and G acts naturally on A. The closed subvariety Y of X is the
vanishing set V(I) of some radical homogeneous ideal I of A; since Y is irreducible
and dimY > 1, we see that A/I is a domain of Krull dimension at least 2. Let
h € G be such that rk(h — 1) < 1 and let f € W span the image of h — 1. Then
(h—1)A C Af, and therefore I + hI = I+ (h—1)I C I + Af. The image of f
in A/I is a homogeneous element of degree one in this N-graded domain. Hence
Kdim(A/(I + Af)) > Kdim(A/I) — 1 > 1 by [5, Proposition 11.3]. Therefore the
non-empty set V(I + Af) is contained in Y N hY = V(I + hl). O

Corollary 4.1.5. With the notation of Proposition L4l the core of the intersec-
tion obstruction Zy, always contains {h € G :tk(h — 1) < 1}.

Proof. By Proposition 14 {h € G : rk(h — 1) < 1} C Z,y for every g € G. But
h e Zgy SgY N th 7& 0 < gilhg €Zy s he gZygil, SO Zgy = gZygil. O

We will now explicitly compute the core of the intersection obstruction Zy. in
the case where Y is the twisted cubic curve in P3(k). Recall that Y can be defined
as the image of the degree 3 Veronese embedding P! (k) — P3(k) given by [a,b] —
[a®,a%b, ab?, b%], or equivalently as the closed subvariety of P3(k) cut out by the
equations zory = 27,7173 = 23,1073 = 2172. Our first task will be to show
that for sufficiently many matrices in # € G := GL4(k) in Jordan normal form,
xC N C =0 for some G-translate C of Y.

Let a,b,c € {0,1}, o, 8,7 € k*, and d,r € k be parameters. For these we define
the following matrices in G:

1 0 0 O 1 0 0 r
a a 0 O 01 00
e 3 0 and hg, = 00 1 0
0 0 ¢ v 0 0 d 1

Lemma 4.1.6. Let Y be the twisted cubic in P3(k). Suppose that
(a) ¢ =1 whenever =+, and

(b) a#0, orb#£0, ora#1 orf#1.
Then there exist d € k* and r € k such that

Ihdﬂay N hde = (.

Proof. Fix a coordinate t on P!(k). Let g, : P1(k) — P3(k) be given by 1y, (t) =
[1,¢,dt3 + 12,43 + 7] if t # oo, and 94,(c0) = [0,0,d,1]. Then hgy,Y is the im-
age of ¥g4,. Note that zig,(c0) = [0,0,8d,cd + ~]; this can only lie in hg,Y
if [0,0,8d,cd + ] = [0,0,d,1], or equivalently, if Sd = d(ed + ). Since ¢ = 1
whenever S # v by assumption (a), by restricting d to satisfy d # 0,8 — ~, we
see that xq,(00) ¢ ha,r(Y). Thus, if d # 0,8 — v and v € g, Y N1y, Y, then
v = 2Yq,r(t) = Y. (s) for some ¢, s # 0.
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We now have to show that under the given hypotheses on a,b,c,«, 3,7, the
system of simultaneous equations in s,t € k

s=at+a,
ds® 4+ s = B(dt® + 1) + bt,
s34 =cldt® +12) + (13 + 1)

has no solutions for at least one value of (d,r). Substituting the first of these
equations into the second gives us a polynomial equation in ¢ of degree at most 3,
whose leading coefficient is d(a® — ). If a® # 3, choose any d € k\{0,3 — v} to
see that t can take at most three values. Since v # 0, we can choose r in such a
way that the third equation does not hold for any of these values of t.

Thus we can assume that a® = 3; in this case the coefficient of ¢ in the second
equation is 3da’a — a® +a?. Aslong as 3a # 0, we can choose d to ensure that this
coefficient is non-zero. Then ¢ can take at most two values, and again as v # 0 we
can choose r so that the third equation fails for either of those values of t. So, we
may assume that 3a = o® — a2 =0, i.e. 3a =0 and a = 1. Then 8 = o® = 1 also.

In the case char(k) # 3 we must have a = 0, so our assumption (b) implies that
b =1 and the second equation reduces to ¢t = 0. In the case char(k) = 3, the second
equation reduces to (2a — b)t + da® +a? = 0. If a = 0 then b = 1 by assumption
and 2a — b # 0, and if a = 1 then 2a — b # 0 for either value of b. In all of these
cases, the values of s and ¢ are uniquely determined by the first two equations. We
can now again choose r to ensure that the third equation does not hold. O

Proposition 4.1.7. Let g € G be such that that tk(u=tg—1) > 2 for any p € k*.
Then we can find a,b,c € {0,1} and «, 5, € k* satisfying conditions (a) and (b)
of Lemma BT, and pu € k*, such that p='g is G-conjugate to

Proof. Amongst all possible eigenvalues of g with largest possible algebraic mul-
tiplicity, choose i to be an eigenvalue of largest possible geometric multiplicity.
Let y be the Jordan normal form of x~'g so that y is G-conjugate to u~'g. Let
a,b,c € {0,1} be the subdiagonal entries of y and let 1, v, 3,y be the eigenvalues of
y. We can take = y unless either condition (a) or condition (b) of Lemma
fails. Suppose for a contradiction that condition (b) fails. Then o = 8 = 1 and
a =b = 0. Because y is in Jordan normal form, either v = 1, or v # 1 and ¢ = 0.
In both of these cases, rk(y — 1) < 1, and hence rk(u~1g — 1) < 1, a contradiction.

We are left to consider the case where condition (a) fails. In this case, 8 =+ and
c = 0. Because 1 is the eigenvalue of y with largest possible algebraic multiplicity
by construction, the diagonal entries of y are necessarily 1,1, 3, 3.

Suppose first that 5 = 1. Because rk(y — 1) > 2 and ¢ = 0, we must have
a=b=1. Then p~'g is G-conjugate to

10

—_ -0 O
_ o oo

0 1
0 1
0 0
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and this matrix satisfies the conditions of Lemma

Suppose now that 8 # 1. Then b = 0 because y is in Jordan normal form.
Because ¢ = 0, the geometric multiplicity of § is 2, and because the geometric
multiplicity of p was chosen to be largest possible, we must also have a = 0. But
then y is G-conjugate to

1 0 0 O
08 0 0
0 0 1 0
0 0 0 B
which also satisfies the conditions of Lemma O

Theorem 4.1.8. Let G = GLy(k) acting naturally on P3(k) and let Y C P3(k) be
the twisted cubic. Then the core of the intersection obstruction of Y is

Zy={9ge€G:1k(g—1) <1} -k*.

Proof. Let g € G be such that tk(g — 1) < 1, and let u € k*. The actions of ug
and g on P3(k) coincide, and g € Z$ by Corollary Hence pg € 25 also.
Conversely, suppose rk(u~1g—1) > 2 for any u € k*. Then by Proposition 1.7,
1 1g is G-conjugate to a matrix x in Jordan normal form which satisfies conditions
(a) and (b) of Lemma So, by Lemma T.6] zhY N hY = () for some h € G.
This means that ¢ Z3. Because Zy is stable under G-conjugation as well as
multiplication by scalars inside G, we conclude that g ¢ Z5.. ]

4.2. Avoiding intersections for groups of units of p-adic division algebras.
Throughout §4.2 we assume that we are given field extensions of Q, as follows:

Q,CLCkCK,

where L/Q, is finite, k is an algebraic closure of L, and K is a complete non-
archimedean field extension of k.

Let G be an affine group scheme over L. We will first establish some notation
involving the functorial conjugation representation [I7, 1.2.6] of the affine group
scheme G on its coordinate ring A := O(G).

For every L-algebra R, the group of R-points G(R) of G acts on itself by conju-
gation, and hence also on A®y, R = O(G®p, R) by functoriality: for each L-algebra
R,r€ R, f € Aand g,h € G(R) we have

(25) (9-(f@r)(h) =rf(g”'hg).

Let p: A — A®p A be the corresponding comodule map, and let {¢;} be a basis
for A := O(G) as an L-vector space. Then for every f € A and every i € I there is
a unique p;(f) € A such that for all f € A we have

p(f)=>_pi(f) @ci.
With this notation in place, formula [I7, 1.2.8(1)] now implies that
(26) g-(f®l)= Zpi(f)ci(g)

for each L-algebra R, g € G(R) and each f € A. Combining 25) and (26]), we
obtain

(27) (fer) g~ hg) = (g-(f@1) (h)=r Z pi(f)(R)ci(g)
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for each f € A, each L-algebra R, each r € R and g, h € G(R).

Definition 4.2.1. We say that z € G(K) is generic if the L-algebra homomorphism
x: O(G) = K is injective.

Generic points exist only when G is connected, however this is not a serious
restriction to impose in practice. Our next result explains why we are interested in
the core of the intersection obstruction.

Theorem 4.2.2. Suppose that G is connected and of finite type over L and that
G := G(k) acts morphically on the projective algebraic variety X over k. Let'Y be
a Zariski closed subset of X. Then for every generic x € G(K), we have

22y (K)z ' NG(L) C Z5.

Proof. Because G is an algebraic affine group scheme over the field L of character-
istic zero, it follows from [29, Theorems 6.6 and 11.4] that A®y k is a domain. The
L-algebra homomorphism = : A — K extends uniquely to a k-algebra homomor-
phism T : A®y k — K. Suppose for a contradiction that kerT # 0. Since A ®r, k
is integral over A, and since it is a domain, it follows that kerx = A NkerT # 0.
This contradicts our assumption on z, so in fact kerz = 0.

Let h € 22y (K)z~' N G(L); we must show that h € 2. Let J be the ideal of
functions in O(G® k) = A®k vanishing on Zy and fix f € J. Then f(z~'hz) =0
because r~'hx € Zy(K). Choose a basis {(;} for k over L. Then {1 ® (;} is a
basis for O(G®r k) = A®[ k as an A-module and we can write f =", f; ® (; for
some unique f; € A. Applying ([27)) we obtain

0= f(z  ha) = (f; @)z ha)

= Ziji(fj)(h)ci(x) =z <Z pi(fj)(h)e; ® Cj) ~

Because h € G(L) and p;(f;) € A for each i, j, we see that p;(f;)(h) € L for all 4, j.
Since kerT = 0 and {¢; ® ¢;} is linearly independent over L, it follows that
pi(f;)(h) =0 forall 4,j.
Substituting this information back into ([27) we deduce that
flg7rhg) =0 forall feJ, geG=G(k).

By Lemma[LT.2] Zy is a Zariski closed subset of G, so V(J) = Zy. Thus g thg €
Zy for all g € G, which means h € Zy,. O

We can now present our main method of constructing examples of regular orbits
of analytic subvarieties of positive dimension.

Corollary 4.2.3. Let G be an affine algebraic group over L, let G := G(k) act
morphically on the projective algebraic k-variety X and let Y be a Zariski closed
subset of X. Let X and Y be the rigid analytifications of the base change of X and
Y to K, respectively. Suppose further that

(a) G is connected and of finite type over L, and

(b) 2y NG(L) acts trivially on X.
Then for every generic x € G(K), the G(L)-orbit of Y is regular in X.
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Proof. Suppose that h € G(L) is such that haY NzY # 0. Then z~'hzY (K) N
Y(K) # 0,50 27 he € Zy(K) and h € 22y (K)xz ' NG(L). Assumption (a) allows
us to apply Theorem .22 which implies that h € Z9 N G(L). Now assumption

(b) tells us that h acts trivially on X and hence also on X, so necessarily we must
have hzY =2Y. ]

We will now give an example where condition (b) of Corollary E.2.3] holds.

Lemma 4.2.4. Let D be a division algebra of degree 4 over L. Fiz an isomorphism
D ®r k= My(k) and regard D> as a subgroup of GL4(k). Then

({g € GL4(k) :tk(g — 1) < 1} - k)N D> = L*.

Proof. Suppose that g € D* and u € kX are such that tk(u=tg — 1) < 1. Let
Xg(t) be the reduced characteristic polynomial of g. Since rk(g — p) < 1, we see
that x4(t) = (t — u)3(t — \) for some X\ € k*. Now x,(t) has coefficients in L by
[0, Lemma IV.2.1], and its irreducible factors in L[t] have no repeated roots in k
because char(L) = 0. Therefore at least one of these factors must be ¢ — p which
forces ¢ € L. Looking at the constant term of x4(t), we deduce that A € L also.
Since x4(g) = 0 by the Cayley-Hamilton Theorem [6, Lemma IV.2.3(5)], g € D
satisfies the equation (g — u)3(g — A\) = 0. Because D is a division algebra by
assumption, it follows that g = g or ¢ = A. In either case, g € L™ as required. [

Proof of Theorem [Dl Tt is easy to see that Zy = Z. Now Theorem tells us
that 2y = 22 ={g€ G:1k(g —1) <1} -k*, s0 Zy N D* = L* by Lemma 424
Scalars in D* act trivially on the flag variety X, so condition (b) of Corollary [L2.3]
is satisfied. Condition (a) is also satisfied because D* is known to be the group
L-points of a connected L-form G of GL4. Now apply Corollary 4.2.3] ]
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