Induction equivalence for equivariant $\mathcal {D}$-modules on rigid analytic spaces
HTML articles powered by AMS MathViewer
- by Konstantin Ardakov;
- Represent. Theory 27 (2023), 177-247
- DOI: https://doi.org/10.1090/ert/642
- Published electronically: May 17, 2023
- HTML | PDF | Request permission
Abstract:
We prove an Induction Equivalence and a Kashiwara Equivalence for coadmissible equivariant $\mathcal {D}$-modules on rigid analytic spaces. This allows us to completely classify such objects with support in a single orbit of a classical point with co-compact stabiliser. As an application, we use the locally analytic Beilinson-Bernstein equivalence to construct new examples of large families of topologically irreducible locally analytic representations of certain compact semisimple $p$-adic Lie groups.References
- Konstantin Ardakov and Oren Ben-Bassat, Bounded linear endomorphisms of rigid analytic functions, Proc. Lond. Math. Soc. (3) 117 (2018), no. 5, 881–900. MR 3877767, DOI 10.1112/plms.12142
- Konstantin Ardakov and Simon Wadsley, $\overset \frown \to {\mathcal D}$-modules on rigid analytic spaces II: Kashiwara’s equivalence, J. Algebraic Geom. 27 (2018), no. 4, 647–701. MR 3846550, DOI 10.1090/jag/709
- Konstantin Ardakov and Simon J. Wadsley, $\overset \frown \to {\mathcal D}$-modules on rigid analytic spaces I, J. Reine Angew. Math. 747 (2019), 221–275. MR 3905134, DOI 10.1515/crelle-2016-0016
- Konstantin Ardakov, Equivariant $\mathcal D$-modules on rigid analytic spaces, Astérisque 423 (2021), 161 (English, with English and French summaries). MR 4234536, DOI 10.24033/ast
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 242802
- Grégory Berhuy and Frédérique Oggier, An introduction to central simple algebras and their applications to wireless communication, Mathematical Surveys and Monographs, vol. 191, American Mathematical Society, Providence, RI, 2013. With a foreword by B. A. Sethuraman. MR 3086869, DOI 10.1090/surv/191
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Formal and rigid geometry. III. The relative maximum principle, Math. Ann. 302 (1995), no. 1, 1–29. MR 1329445, DOI 10.1007/BF01444485
- Nicolas Bourbaki, General topology. Chapters 5–10, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation. MR 1726872
- Brian Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 473–541 (English, with English and French summaries). MR 1697371, DOI 10.5802/aif.1681
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2014891, DOI 10.1007/978-1-4612-0041-3
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 224620, DOI 10.1007/BFb0073971
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Johannes Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. Reine Angew. Math. 510 (1999), 103–159. MR 1696093, DOI 10.1515/crll.1999.043
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Mark Kisin, Local constancy in $p$-adic families of Galois representations, Math. Z. 230 (1999), no. 3, 569–593. MR 1680032, DOI 10.1007/PL00004706
- Mark Kisin and Matthias Strauch, Locally analytic cuspidal representations for $\textrm {GL}_2$ and related groups, J. Inst. Math. Jussieu 5 (2006), no. 3, 373–421. MR 2241928, DOI 10.1017/S1474748005000228
- Huishi Li and Freddy van Oystaeyen, Zariskian filtrations, $K$-Monographs in Mathematics, vol. 2, Kluwer Academic Publishers, Dordrecht, 1996. MR 1420862, DOI 10.1007/978-94-015-8759-4
- R. Mathers, Twisted coadmissible equivariant $\mathcal {D}$-modules on rigid analytic spaces, Ph.D. Thesis, University of Oxford, UK, 2019.
- George S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222. MR 154906, DOI 10.1090/S0002-9947-1963-0154906-3
- Peter Schneider, Points of rigid analytic varieties, J. Reine Angew. Math. 434 (1993), 127–157. MR 1195693, DOI 10.1515/crll.1993.434.127
- Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547, DOI 10.1007/978-3-662-04728-6
- P. Schneider and J. Teitelbaum, $p$-adic Fourier theory, Doc. Math. 6 (2001), 447–481. MR 1871671, DOI 10.4171/dm/110
- P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel J. Math. 127 (2002), 359–380. MR 1900706, DOI 10.1007/BF02784538
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
- M. van der Put and P. Schneider, Points and topologies in rigid geometry, Math. Ann. 302 (1995), no. 1, 81–103. MR 1329448, DOI 10.1007/BF01444488
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117, DOI 10.1007/978-1-4612-6217-6
Bibliographic Information
- Konstantin Ardakov
- Affiliation: Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- MR Author ID: 741414
- ORCID: 0000-0002-5011-022X
- Email: ardakov@maths.ox.ac.uk
- Received by editor(s): October 17, 2022
- Received by editor(s) in revised form: January 9, 2023
- Published electronically: May 17, 2023
- Additional Notes: The author was supported by EPSRC grant EP/L005190/1.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 177-247
- MSC (2020): Primary 14G22; Secondary 32C38
- DOI: https://doi.org/10.1090/ert/642
- MathSciNet review: 4589692