Topological quantum field theories from Hecke algebras
HTML articles powered by AMS MathViewer
- by Vladimir Fock, Valdo Tatitscheff and Alexander Thomas;
- Represent. Theory 27 (2023), 248-291
- DOI: https://doi.org/10.1090/ert/640
- Published electronically: May 22, 2023
- HTML | PDF
Abstract:
We construct one-dimensional non-commutative topological quantum field theories (TQFTs), one for each Hecke algebra corresponding to a finite Coxeter system. These TQFTs associate an invariant to each ciliated surface, which is a Laurent polynomial for punctured surfaces. There is a graphical way to compute the invariant using minimal colored graphs. We give explicit formulas in terms of the Schur elements of the Hecke algebra and prove positivity properties for the invariants when the Coxeter group is of classical type, or one of the exceptional types $H_3$, $E_6$ and $E_7$.References
- A. V. Alexeevski and S. M. Natanzon, Hurwitz numbers for regular coverings of surfaces by seamed surfaces and Cardy-Frobenius algebras of finite groups, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 224, Amer. Math. Soc., Providence, RI, 2008, pp. 1–25. MR 2462353, DOI 10.1090/trans2/224/01
- Michael Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175–186 (1989). MR 1001453, DOI 10.1007/BF02698547
- Maria Chlouveraki, Blocks and families for cyclotomic Hecke algebras, Lecture Notes in Mathematics, vol. 1981, Springer-Verlag, Berlin, 2009. MR 2547670, DOI 10.1007/978-3-642-03064-2
- Maria Chlouveraki, Hecke algebras, generalisations and representation theory, Habilitation thesis, 2016, https://hal.archives-ouvertes.fr/tel-01411063/document.
- Maria Chlouveraki and Nicolas Jacon, Schur elements for the Ariki-Koike algebra and applications, J. Algebraic Combin. 35 (2012), no. 2, 291–311. MR 2886292, DOI 10.1007/s10801-011-0314-4
- Charles W. Curtis, Representations of Hecke algebras, Astérisque 168 (1988), 9, 13–60. Orbites unipotentes et représentations, I. MR 1021492
- Robbert Dijkgraaf and Edward Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), no. 2, 393–429. MR 1048699, DOI 10.1007/BF02096988
- Ben Elias and Geordie Williamson, Soergel calculus, Represent. Theory 20 (2016), 295–374. MR 3555156, DOI 10.1090/ert/481
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI 10.1007/s10240-006-0039-4
- Vladimir V. Fock and Alexander B. Goncharov, Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 647–684. MR 2349682, DOI 10.4171/029-1/16
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239–403. MR 3003931, DOI 10.1016/j.aim.2012.09.027
- Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI 10.1007/BF01190329
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Sam Gunningham, Spin Hurwitz numbers and topological quantum field theory, Geom. Topol. 20 (2016), no. 4, 1859–1907. MR 3548460, DOI 10.2140/gt.2016.20.1859
- Akihiko Gyoja and Katsuhiro Uno, On the semisimplicity of Hecke algebras, J. Math. Soc. Japan 41 (1989), no. 1, 75–79. MR 972165, DOI 10.2969/jmsj/04110075
- A. Hurwitz, Ueber die Nullstellen der hypergeometrischen Reihe, Math. Ann. 38 (1891), no. 3, 452–458 (German). MR 1510682, DOI 10.1007/BF01199430
- Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215–236 (1964). MR 165016
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Sergei K. Lando and Alexander K. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, vol. 141, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier; Low-Dimensional Topology, II. MR 2036721, DOI 10.1007/978-3-540-38361-1
- Aaron D. Lauda and Hendryk Pfeiffer, State sum construction of two-dimensional open-closed topological quantum field theories, J. Knot Theory Ramifications 16 (2007), no. 9, 1121–1163. MR 2375819, DOI 10.1142/S0218216507005725
- Aaron D. Lauda and Hendryk Pfeiffer, Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras, Topology Appl. 155 (2008), no. 7, 623–666. MR 2395583, DOI 10.1016/j.topol.2007.11.005
- Ian Le, Higher laminations and affine buildings, Geom. Topol. 20 (2016), no. 3, 1673–1735. MR 3523066, DOI 10.2140/gt.2016.20.1673
- Nicolas Libedinsky, Gentle introduction to Soergel bimodules I: the basics, São Paulo J. Math. Sci. 13 (2019), no. 2, 499–538. MR 4025580, DOI 10.1007/s40863-019-00136-5
- Hideya Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258 (1964), 3419–3422 (French). MR 183818
- Jean Michel, The development version of the CHEVIE package of GAP3, J. Algebra 435 (2015), 308–336. MR 3343221, DOI 10.1016/j.jalgebra.2015.03.031
- G. Moore and G. Segal, D-branes and K-theory in 2D topological field theory, Preprint arXiv:hep-th/0609042, 2006.
- Max Neunhöffer, Kazhdan-Lusztig basis, Wedderburn decomposition, and Lusztig’s homomorphism for Iwahori-Hecke algebras, J. Algebra 303 (2006), no. 1, 430–446. MR 2253671, DOI 10.1016/j.jalgebra.2006.04.005
- Mark Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL, 2009. Updated and revised. MR 2560094
- Wolfgang Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007), no. 3, 501–525 (German, with English and German summaries). MR 2329762, DOI 10.1017/S1474748007000023
- Richard P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500–535. MR 1110850, DOI 10.1111/j.1749-6632.1989.tb16434.x
- W. A. Stein et al., Sage mathematics software (version 10.15.7), The Sage Development Team, 2021, http://www.sagemath.org.
- Geordie Williamson, The Hodge theory of the Hecke category, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2018, pp. 663–683. MR 3890447
- D. Xie, Higher laminations, webs and N= 2 line operators, Preprint, arXiv:1304.2390, 2013.
Bibliographic Information
- Vladimir Fock
- Affiliation: IRMA, UMR 7501, Universite de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France
- MR Author ID: 277295
- Email: fock@math.unistra.fr
- Valdo Tatitscheff
- Affiliation: IRMA, UMR 7501, Universite de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France
- Address at time of publication: Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
- MR Author ID: 1406715
- ORCID: 0000-0003-3552-3306
- Email: valdo.tatitscheff@normalesup.org
- Alexander Thomas
- Affiliation: Max-Planck-Institut für Mathematik Bonn, Vivatsgasse 7, 53111 Bonn, Germany
- Address at time of publication: Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
- MR Author ID: 1466039
- ORCID: 0009-0003-7161-2776
- Email: athomas@mathi.uni-heidelberg.de
- Received by editor(s): January 6, 2022
- Received by editor(s) in revised form: November 24, 2022, and December 8, 2022
- Published electronically: May 22, 2023
- Additional Notes: The third author was supported by the Max-Planck-Institute for Mathematics in Bonn
- © Copyright 2023 Copyright by the authors
- Journal: Represent. Theory 27 (2023), 248-291
- MSC (2020): Primary 20C08, 57K16; Secondary 57K20
- DOI: https://doi.org/10.1090/ert/640
- MathSciNet review: 4598523