Family of $\mathscr {D}$-modules and representations with a boundedness property
HTML articles powered by AMS MathViewer
- by Masatoshi Kitagawa;
- Represent. Theory 27 (2023), 292-355
- DOI: https://doi.org/10.1090/ert/641
- Published electronically: June 27, 2023
- HTML | PDF | Request permission
Abstract:
In the representation theory of real reductive Lie groups, many objects have finiteness properties. For example, the lengths of Verma modules and principal series representations are finite, and more precisely, they are bounded. In this paper, we introduce a notion of uniformly bounded families of holonomic ${\mathscr {D}}$-modules to explain and find such boundedness properties.
A uniform bounded family has good properties. For instance, the lengths of modules in the family are bounded and the uniform boundedness is preserved by direct images and inverse images. By the Beilinson–Bernstein correspondence, we deduce several boundedness results about the representation theory of complex reductive Lie algebras from corresponding results of uniformly bounded families of ${\mathscr {D}}$-modules. In this paper, we concentrate on proving fundamental properties of uniformly bounded families, and preparing abstract results for applications to the branching problem and harmonic analysis.
References
- Jeffrey D. Adams, Dipendra Prasad, and Gordan Savin, Euler-Poincaré characteristic for the oscillator representation, Representation theory, number theory, and invariant theory, Progr. Math., vol. 323, Birkhäuser/Springer, Cham, 2017, pp. 1–22. MR 3753906, DOI 10.1007/978-3-319-59728-7_{1}
- Avraham Aizenbud, Dmitry Gourevitch, and Andrei Minchenko, Holonomicity of relative characters and applications to multiplicity bounds for spherical pairs, Selecta Math. (N.S.) 22 (2016), no. 4, 2325–2345. MR 3573960, DOI 10.1007/s00029-016-0276-4
- Avraham Aizenbud and Eitan Sayag, Homological multiplicities in representation theory of $p$-adic groups, Math. Z. 294 (2020), no. 1-2, 451–469. MR 4054816, DOI 10.1007/s00209-019-02262-4
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26–40. MR 320735
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Joseph Bernstein and Valery Lunts, Localization for derived categories of $({\mathfrak {g}},K)$-modules, J. Amer. Math. Soc. 8 (1995), no. 4, 819–856. MR 1317229, DOI 10.1090/S0894-0347-1995-1317229-7
- Frédéric V. Bien, ${\scr D}$-modules and spherical representations, Mathematical Notes, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1082342, DOI 10.1515/9781400862078
- J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic $D$-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Kei Yuen Chan and Gordan Savin, A vanishing Ext-branching theorem for $(\mathrm {GL}_{n+1}(F),\mathrm {GL}_n(F))$, Duke Math. J. 170 (2021), no. 10, 2237–2261. MR 4291425, DOI 10.1215/00127094-2021-0028
- S. C. Coutinho and D. Levcovitz, $\scr D$-modules and étale morphisms, Comm. Algebra 29 (2001), no. 4, 1487–1497. MR 1853107, DOI 10.1081/AGB-100002114
- Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486, DOI 10.1007/978-0-387-79852-3
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Henryk Hecht, Dragan Miličić, Wilfried Schmid, and Joseph A. Wolf, Localization and standard modules for real semisimple Lie groups. I. The duality theorem, Invent. Math. 90 (1987), no. 2, 297–332. MR 910203, DOI 10.1007/BF01388707
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, DOI 10.1090/S0002-9947-1989-0986027-X
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992. Applications of $\textrm {SL}(2,\textbf {R})$. MR 1151617, DOI 10.1007/978-1-4613-9200-2
- Masaki Kashiwara, Representation theory and $D$-modules on flag varieties, Astérisque 173-174 (1989), 9, 55–109. Orbites unipotentes et représentations, III. MR 1021510
- Masaki Kashiwara, Equivariant derived category and representation of real semisimple Lie groups, Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 137–234. MR 2409699, DOI 10.1007/978-3-540-76892-0_{3}
- Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR 2182076, DOI 10.1007/3-540-27950-4
- Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level. II. Nonintegral case, Duke Math. J. 84 (1996), no. 3, 771–813. MR 1408544, DOI 10.1215/S0012-7094-96-08424-0
- Masatoshi Kitagawa, Uniformly bounded multiplicities, polynomial identities and coisotropic actions, arXiv:2109.05555, 2021.
- Masatoshi Kitagawa, Stability of branching laws for highest weight modules, Transform. Groups 19 (2014), no. 4, 1027–1050. MR 3278860, DOI 10.1007/s00031-014-9284-7
- S. N. Kitchen, Cohomology of standard modules on partial flag varieties, Represent. Theory 16 (2012), 317–344. MR 2945222, DOI 10.1090/S1088-4165-2012-00419-8
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- Friedrich Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. of Math. (2) 140 (1994), no. 2, 253–288. MR 1298713, DOI 10.2307/2118600
- Toshiyuki Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, Representation theory and automorphic forms, Progr. Math., vol. 255, Birkhäuser Boston, Boston, MA, 2008, pp. 45–109. MR 2369496, DOI 10.1007/978-0-8176-4646-2_{3}
- Toshiyuki Kobayashi and Toshio Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math. 248 (2013), 921–944. MR 3107532, DOI 10.1016/j.aim.2013.07.015
- Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1923198, DOI 10.1007/978-1-4612-0105-2
- J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45–57. MR 323846, DOI 10.1090/S0002-9947-1973-0323846-5
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Dragan Miličić and Pavle Pandžić, Equivariant derived categories, Zuckerman functors and localization, Geometry and representation theory of real and $p$-adic groups (Córdoba, 1995) Progr. Math., vol. 158, Birkhäuser Boston, Boston, MA, 1998, pp. 209–242. MR 1486143
- Ivan Penkov and Gregg Zuckerman, Algebraic methods in the theory of generalized Harish-Chandra modules, Developments and retrospectives in Lie theory, Dev. Math., vol. 38, Springer, Cham, 2014, pp. 331–350. MR 3308790, DOI 10.1007/978-3-319-09804-3_{1}5
- A. V. Petukhov, Supports of $(\mathfrak {g},\mathfrak {k})$-modules of finite type, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (2012), 51–55 (Russian, with English and Russian summaries); English transl., Moscow Univ. Math. Bull. 67 (2012), no. 3, 125–128. MR 3026844, DOI 10.3103/S0027132212030084
- Dipendra Prasad, Ext-analogues of branching laws, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1367–1392. MR 3966813
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
- Taito Tauchi, A generalization of the Kobayashi-Oshima uniformly bounded multiplicity theorem, Internat. J. Math. 32 (2021), no. 14, Paper No. 2150107, 25. MR 4369760, DOI 10.1142/S0129167X2150107X
- Erik G. F. Thomas, An infinitesimal characterization of Gel′fand pairs, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 379–385. MR 737415, DOI 10.1090/conm/026/737415
- Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138, Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2797018, DOI 10.1007/978-3-642-18399-7
- Erik P. van den Ban, Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula, Ark. Mat. 25 (1987), no. 2, 175–187. MR 923405, DOI 10.1007/BF02384442
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
Bibliographic Information
- Masatoshi Kitagawa
- Affiliation: Department of Mathematics, School of Education, Waseda University, 1-104 Totsukamachi, Shinjuku-ku, Tokyo 169-8050, Japan
- MR Author ID: 1050677
- Email: kitamasa@aoni.waseda.jp
- Received by editor(s): May 27, 2022
- Received by editor(s) in revised form: November 5, 2022, December 17, 2022, and December 26, 2022
- Published electronically: June 27, 2023
- Additional Notes: The author was partially supported by Waseda University Grants for Special Research Projects (No. 2019C-528).
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 292-355
- MSC (2020): Primary 22E46; Secondary 32C38
- DOI: https://doi.org/10.1090/ert/641
- MathSciNet review: 4608422