Unitary representations of totally disconnected locally compact groups satisfying Ol′šhanskiĭ’s factorisation
HTML articles powered by AMS MathViewer
- by Lancelot Semal;
- Represent. Theory 27 (2023), 356-414
- DOI: https://doi.org/10.1090/ert/637
- Published electronically: June 28, 2023
- PDF | Request permission
Abstract:
Inspired by Ol′šhanskiĭ’s work, we provide an axiomatic framework to describe certain irreducible unitary representations of non-discrete unimodular totally disconnected locally compact groups. We look at the applications to certain groups of automorphisms of locally finite trees and semi-regular right-angled buildings.References
- Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729, DOI 10.1007/978-0-387-78835-7
- Olivier Eric Amann, Groups of tree-automorphisms and their unitary representations, Ph.D. Thesis, ETH Zurich, 2003.
- Christopher Banks, Murray Elder, and George A. Willis, Simple groups of automorphisms of trees determined by their actions on finite subtrees, J. Group Theory 18 (2015), no. 2, 235–261. MR 3318536, DOI 10.1515/jgth-2014-0041
- Udo Baumgartner, Bertrand Rémy, and George A. Willis, Flat rank of automorphism groups of buildings, Transform. Groups 12 (2007), no. 3, 413–436. MR 2356316, DOI 10.1007/s00031-006-0050-3
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- I. N. Bernšteĭn, All reductive ${\mathfrak {p}}$-adic groups are of type I, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 3–6 (Russian). MR 348045
- Pierre-Emmanuel Caprace, Automorphism groups of right-angled buildings: simplicity and local splittings, Fund. Math. 224 (2014), no. 1, 17–51. MR 3164745, DOI 10.4064/fm224-1-2
- Pierre-Emmanuel Caprace, Mehrdad Kalantar, and Nicolas Monod, A type i conjecture and boundary representations of hyperbolic groups, Preprint, arXiv:2110.00190, 2022.
- Tom De Medts, Ana C. Silva, and Koen Struyve, Universal groups for right-angled buildings, Groups Geom. Dyn. 12 (2018), no. 1, 231–287. MR 3781422, DOI 10.4171/GGD/443
- J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. I, Amer. J. Math. 81 (1959), 160–170 (French). MR 103943, DOI 10.2307/2372853
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 458185
- M. Duflo and Calvin C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209–243. MR 393335, DOI 10.1016/0022-1236(76)90079-3
- Alessandro Figà-Talamanca and Claudio Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR 1152801, DOI 10.1017/CBO9780511662324
- Frédéric Haglund and Frédéric Paulin, Constructions arborescentes d’immeubles, Math. Ann. 325 (2003), no. 1, 137–164 (French, with English summary). MR 1957268, DOI 10.1007/s00208-002-0373-x
- Cyril Houdayer and Sven Raum, Locally compact groups acting on trees, the type I conjecture and non-amenable von Neumann algebras, Comment. Math. Helv. 94 (2019), no. 1, 185–219. MR 3941470, DOI 10.4171/CMH/458
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 460423
- Eberhard Kaniuth and Keith F. Taylor, Induced representations of locally compact groups, Cambridge Tracts in Mathematics, vol. 197, Cambridge University Press, Cambridge, 2013. MR 3012851
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Hideya Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Mathematics, Vol. 590, Springer-Verlag, Berlin-New York, 1977 (French). MR 579177, DOI 10.1007/BFb0086707
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Claudio Nebbia, Classification of all irreducible unitary representations of the stabilizer of the horicycles [horocycles] of a tree, Israel J. Math. 70 (1990), no. 3, 343–351. MR 1074496, DOI 10.1007/BF02801468
- Claudio Nebbia, Groups of isometries of a tree and the CCR property, Rocky Mountain J. Math. 29 (1999), no. 1, 311–316. MR 1687668, DOI 10.1216/rmjm/1181071692
- G. I. Ol′šanskiĭ, Classification of the irreducible representations of the automorphism groups of Bruhat-Tits trees, Funkcional. Anal. i Priložen. 11 (1977), no. 1, 32–42, 96 (Russian). MR 578650
- G. I. Ol′šanskiĭ, New “large” groups of type $\textrm {I}$, Current problems in mathematics, Vol. 16 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1980, pp. 31–52, 228 (Russian). MR 611159
- Nicolas Radu, A classification theorem for boundary 2-transitive automorphism groups of trees, Invent. Math. 209 (2017), no. 1, 1–60. MR 3660305, DOI 10.1007/s00222-016-0704-2
- Lancelot Semal, Radu groups acting on trees are CCR, Preprint, arXiv:2203.04189, 2022.
- Elmar Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190–196 (German). MR 248288, DOI 10.1007/BF01404824
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 470099
- Stephan Tornier, Groups acting on trees with prescribed local action, Preprint, arXiv:2002.09876, 2020.
Bibliographic Information
- Lancelot Semal
- Affiliation: UCLouvain, Chemin du Cyclotron 2/L7.01.02, 1348 Louvain-la-Neuve, Belgium
- Email: lancelot.semal@uclouvain.be
- Received by editor(s): July 12, 2021
- Received by editor(s) in revised form: March 9, 2022, October 17, 2022, and November 23, 2022
- Published electronically: June 28, 2023
- Additional Notes: This research was completed while the author was an F.R.S.-FNRS Research Fellow.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 356-414
- MSC (2020): Primary 22D12, 20E08, 57M07, 51E24
- DOI: https://doi.org/10.1090/ert/637
- MathSciNet review: 4609145