An approach to the characterization of the local Langlands correspondence
HTML articles powered by AMS MathViewer
- by Alexander Bertoloni Meli and Alex Youcis;
- Represent. Theory 27 (2023), 415-430
- DOI: https://doi.org/10.1090/ert/643
- Published electronically: July 7, 2023
- HTML | PDF
Abstract:
Scholze and Shin [J. Amer. Math. Soc. 26 (2013), pp. 261–294] gave a conjectural formula relating the traces on the automorphic and Galois sides of a local Langlands correspondence. Their work generalized an earlier formula of Scholze, which he used to give a new proof of the local Langlands conjecture for $\mathrm {GL}_n$. Unlike the case for $\mathrm {GL}_n$, the existence of non-singleton $L$-packets for more general reductive groups constitutes a serious representation-theoretic obstruction to proving that such a formula uniquely characterizes such a correspondence. We show how to overcome this problem, and demonstrate that the Scholze–Shin equation is enough, together with other standard desiderata, to uniquely characterize the local Langlands correspondence for discrete parameters.References
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Alexander Bertoloni Meli, An averaging formula for the cohomology of PEL-type Rapoport–Zink spaces, arXiv preprint arXiv:2103.11538 (2021).
- Alexander Bertoloni Meli, Naoki Imai, and Alex Youcis, The Jacobson–Morozov morphism for Langlands parameters in the relative setting, arXiv preprint arXiv:2203.01768 (2022).
- Alexander Bertoloni Meli and Alex Youcis, The Scholze-Shin conjecture for unramified unitary groups, preprint on webpage at https://alex-youcis.github.io/ScholzeShinIMPAN.pdf, 2019.
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 27–61. MR 546608
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Symplectic local root numbers, central critical $L$ values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1–109 (English, with English and French summaries). Sur les conjectures de Gross et Prasad. I. MR 3202556
- Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457–508. MR 180631, DOI 10.1090/S0002-9947-1965-0180631-0
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Kaoru Hiraga and Hiroshi Saito, On $L$-packets for inner forms of $SL_n$, Mem. Amer. Math. Soc. 215 (2012), no. 1013, vi+97. MR 2918491, DOI 10.1090/S0065-9266-2011-00642-8
- Tasho Kaletha, The local Langlands conjectures for non-quasi-split groups, Families of automorphic forms and the trace formula, Simons Symp., Springer, [Cham], 2016, pp. 217–257. MR 3675168
- Tasho Kaletha, Rigid inner forms of real and $p$-adic groups, Ann. of Math. (2) 184 (2016), no. 2, 559–632. MR 3548533, DOI 10.4007/annals.2016.184.2.6
- Tasho Kaletha, Supercuspidal l-packets, arXiv preprint arXiv:1912.03274 (2019).
- David Hansen, Tasho Kaletha, and Jared Weinstein, On the Kottwitz conjecture for local shtuka spaces, Forum Math. Pi 10 (2022), Paper No. e13, 79. MR 4430954, DOI 10.1017/fmp.2022.7
- Robert E. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), no. 3, 287–300. MR 761308, DOI 10.1007/BF01450697
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI 10.1007/BF01458611
- Robert E. Kottwitz, Shimura varieties and $\lambda$-adic representations, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 161–209. MR 1044820
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070
- Chung Pang Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248. MR 3338302, DOI 10.1090/memo/1108
- Jonathan D. Rogawski, Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, vol. 123, Princeton University Press, Princeton, NJ, 1990. MR 1081540, DOI 10.1515/9781400882441
- Peter Scholze, The Langlands-Kottwitz method and deformation spaces of $p$-divisible groups, J. Amer. Math. Soc. 26 (2013), no. 1, 227–259. MR 2983011, DOI 10.1090/S0894-0347-2012-00753-X
- Peter Scholze, The local Langlands correspondence for $\mathrm {GL}_n$ over $p$-adic fields, Invent. Math. 192 (2013), no. 3, 663–715. MR 3049932, DOI 10.1007/s00222-012-0420-5
- Sug Woo Shin, A stable trace formula for Igusa varieties, J. Inst. Math. Jussieu 9 (2010), no. 4, 847–895. MR 2684263, DOI 10.1017/S1474748010000046
- Peter Scholze and Sug Woo Shin, On the cohomology of compact unitary group Shimura varieties at ramified split places, J. Amer. Math. Soc. 26 (2013), no. 1, 261–294. MR 2983012, DOI 10.1090/S0894-0347-2012-00752-8
- Olivier Taïbi, Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 3, 839–871. MR 3908767, DOI 10.4171/JEMS/852
- J.-L. Waldspurger, La formule de Plancherel pour les groupes $p$-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333 (French, with French summary). MR 1989693, DOI 10.1017/S1474748003000082
- J.-L. Waldspurger, Les facteurs de transfert pour les groupes classiques: un formulaire, Manuscripta Math. 133 (2010), no. 1-2, 41–82 (French, with English and French summaries). MR 2672539, DOI 10.1007/s00229-010-0363-3
- Alex Youcis, The Langlands-Kottwitz-Scholze method for deformation spaces of abelian type (in preparation).
- Yihang Zhu, The Stabilization of the Frobenius-Hecke Traces on the Intersection Cohomology of Orthogonal Shimura Varieties, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–Harvard University. MR 4172387
Bibliographic Information
- Alexander Bertoloni Meli
- Affiliation: Mathematics Department, University of Michigan, 530 Church St, Ann Arbor, Michigan 48109
- MR Author ID: 1516552
- Email: abertolo@umich.edu
- Alex Youcis
- Affiliation: Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
- MR Author ID: 1528164
- ORCID: 0000-0001-5000-6679
- Email: ayoucis@g.ecc.u-tokyo.ac.jp
- Received by editor(s): November 20, 2021
- Received by editor(s) in revised form: January 6, 2023, and February 19, 2023
- Published electronically: July 7, 2023
- Additional Notes: During the completion of this work, the first author was partially funded by NSF RTG grant 1646385. The second author was partially supported by the funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 802787).
- © Copyright 2023 Copyright by the authors
- Journal: Represent. Theory 27 (2023), 415-430
- MSC (2020): Primary 22E50; Secondary 11R39
- DOI: https://doi.org/10.1090/ert/643
- MathSciNet review: 4612310