Skew cellularity of the Hecke algebras of type $G(\ell ,p,n)$
HTML articles powered by AMS MathViewer
- by Jun Hu, Andrew Mathas and Salim Rostam;
- Represent. Theory 27 (2023), 508-573
- DOI: https://doi.org/10.1090/ert/646
- Published electronically: July 20, 2023
- PDF | Request permission
Abstract:
This paper introduces (graded) skew cellular algebras, which generalise Graham and Lehrer’s cellular algebras. We show that all of the main results from the theory of cellular algebras extend to skew cellular algebras and we develop a “cellular algebra Clifford theory” for the skew cellular algebras that arise as fixed point subalgebras of cellular algebras.
As an application of this general theory, the main result of this paper proves that the Hecke algebras of type $G(\ell ,p,n)$ are graded skew cellular algebras. In the special case when $p = 2$ this implies that the Hecke algebras of type $G(\ell ,2,n)$ are graded cellular algebras. The proofs of all of these results rely, in a crucial way, on the diagrammatic Cherednik algebras of Webster and Bowman. Our main theorem extends Geck’s result that the one parameter Iwahori-Hecke algebras are cellular algebras in two ways. First, our result applies to all cyclotomic Hecke algebras in the infinite series in the Shephard-Todd classification of complex reflection groups. Secondly, we lift cellularity to the graded setting.
As applications of our main theorem, we show that the graded decomposition matrices of the Hecke algebras of type $G(\ell ,p,n)$ are unitriangular, we construct and classify their graded simple modules and we prove the existence of “adjustment matrices” in positive characteristic.
References
- Susumu Ariki, Representation theory of a Hecke algebra of $G(r,p,n)$, J. Algebra 177 (1995), no. 1, 164–185. MR 1356366, DOI 10.1006/jabr.1995.1292
- Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $(\textbf {Z}/r\textbf {Z})\wr {\mathfrak {S}}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216–243. MR 1279219, DOI 10.1006/aima.1994.1057
- C. Bowman, The many integral graded cellular bases of Hecke algebras of complex reflection groups, Amer. J. Math. 144 (2022), no. 2, 437–504. MR 4401509, DOI 10.1353/ajm.2022.0008
- Christopher Bowman, John Enyang, and Frederick Goodman, Diagram algebras, dominance triangularity and skew cell modules, J. Aust. Math. Soc. 104 (2018), no. 1, 13–36. MR 3745412, DOI 10.1017/S1446788717000179
- Michel Broué, Reflection groups, braid groups, Hecke algebras, finite reductive groups, Current developments in mathematics, 2000, Int. Press, Somerville, MA, 2001, pp. 1–107. MR 1882533
- Michel Broué and Gunter Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119–189 (German). Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235834
- Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. MR 2551762, DOI 10.1007/s00222-009-0204-8
- Jonathan Brundan and Alexander Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883–1942. MR 2562768, DOI 10.1016/j.aim.2009.06.018
- Jonathan Brundan, Alexander Kleshchev, and Weiqiang Wang, Graded Specht modules, J. Reine Angew. Math. 655 (2011), 61–87. MR 2806105, DOI 10.1515/CRELLE.2011.033
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 632548
- Meinolf Geck, Hecke algebras of finite type are cellular, Invent. Math. 169 (2007), no. 3, 501–517. MR 2336039, DOI 10.1007/s00222-007-0053-2
- Meinolf Geck and Nicolas Jacon, Representations of Hecke algebras at roots of unity, Algebra and Applications, vol. 15, Springer-Verlag London, Ltd., London, 2011. MR 2799052, DOI 10.1007/978-0-85729-716-7
- G. Genet, On decomposition matrices for graded algebras, J. Algebra 274 (2004), no. 2, 523–542. MR 2043361, DOI 10.1016/j.jalgebra.2003.09.051
- Gwenaëlle Genet and Nicolas Jacon, Modular representations of cyclotomic Hecke algebras of type $G(r,p,n)$, Int. Math. Res. Not. , posted on (2006), Art. ID 93049, 18. MR 2276351, DOI 10.1155/IMRN/2006/93049
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- Jun Hu, The number of simple modules for the Hecke algebras of type $G(r,p,n)$, J. Algebra 321 (2009), no. 11, 3375–3396. With an appendix by Xiaoyi Cui. MR 2510053, DOI 10.1016/j.jalgebra.2008.01.008
- Jun Hu and Andrew Mathas, Morita equivalences of cyclotomic Hecke algebras of type $G(r,p,n)$, J. Reine Angew. Math. 628 (2009), 169–194. MR 2503239, DOI 10.1515/CRELLE.2009.022
- Jun Hu and Andrew Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $A$, Adv. Math. 225 (2010), no. 2, 598–642. MR 2671176, DOI 10.1016/j.aim.2010.03.002
- Jun Hu and Andrew Mathas, Decomposition numbers for Hecke algebras of type $G(r,p,n)$: the $(\epsilon ,q)$-separated case, Proc. Lond. Math. Soc. (3) 104 (2012), no. 5, 865–926. MR 2928331, DOI 10.1112/plms/pdr047
- Jun Hu and Andrew Mathas, Seminormal forms and cyclotomic quiver Hecke algebras of type $A$, Math. Ann. 364 (2016), no. 3-4, 1189–1254. MR 3466865, DOI 10.1007/s00208-015-1242-8
- Alexander Ferdinand Kerschl, On simple modules of cyclotomic quiver Hecke algebras of type A, Adv. Math. 390 (2021), Paper No. 107852, 49. MR 4292956, DOI 10.1016/j.aim.2021.107852
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- G. Lehrer and M. Lyu, Generalised Temperley-Lieb algebras of type $G(r,p,n)$, arXiv:2211.09377, 2021.
- E. LePage and B. Webster, Rational Cherednik algebras of $G(\ell ,p,n)$ from the Coulomb perspective, arXiv:1912.00046, 2020.
- Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications, 1st ed., Cambridge University Press, Cambridge, 1994. MR 1294139, DOI 10.1017/CBO9781139172769
- Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, vol. 15, American Mathematical Society, Providence, RI, 1999. MR 1711316, DOI 10.1090/ulect/015
- Cyclotomic quiver Hecke algebras of type A, in Modular representation theory of finite and $p$-adic groups, G. W. Teck and K. M. Tan, eds., National University of Singapore Lecture Notes Series, 30, World Scientific, ch. 5, 165–266, arXiv:1310.2142, 2015.
- S. Rostam, Quiver Hecke algebras and generalisations of Iwahori–Hecke algebras, Ph.D. Thesis, Université Paris-Saclay, 2018, https://tel.archives-ouvertes.fr/tel-01954325.
- Salim Rostam, Cyclotomic quiver Hecke algebras and Hecke algebra of $G(r,p,n)$, Trans. Amer. Math. Soc. 371 (2019), no. 6, 3877–3916. MR 3917212, DOI 10.1090/tran/7485
- Salim Rostam, Stuttering blocks of Ariki-Koike algebras, Algebr. Comb. 2 (2019), no. 1, 75–118. MR 3912169, DOI 10.5802/alco.40
- Raphaël Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359–410. MR 2908731, DOI 10.1142/S1005386712000247
- Ben Webster, Rouquier’s conjecture and diagrammatic algebra, Forum Math. Sigma 5 (2017), Paper No. e27, 71. MR 3732238, DOI 10.1017/fms.2017.17
- Ben Webster, Weighted Khovanov-Lauda-Rouquier algebras, Doc. Math. 24 (2019), 209–250. MR 3946709, DOI 10.4171/dm/679
- Changchang Xi and Jinbi Zhang, Structure of centralizer matrix algebras, Linear Algebra Appl. 622 (2021), 215–249. MR 4241258, DOI 10.1016/j.laa.2021.03.034
Bibliographic Information
- Jun Hu
- Affiliation: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- MR Author ID: 635795
- Email: junhu404@bit.edu.cn
- Andrew Mathas
- Affiliation: School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
- MR Author ID: 349260
- ORCID: 0000-0001-7565-5798
- Email: andrew.mathas@sydney.edu.au
- Salim Rostam
- Affiliation: Univ. Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
- MR Author ID: 1204275
- ORCID: 0000-0001-5928-3920
- Email: salim.rostam@ens-rennes.fr
- Received by editor(s): December 14, 2022
- Received by editor(s) in revised form: February 6, 2023, and February 19, 2023
- Published electronically: July 20, 2023
- Additional Notes: The first author was supported by the National Natural Science Foundation of China (No. 12171029). The second author was supported, in part, by the Australian Research Council.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 508-573
- MSC (2020): Primary 20C08, 16G30, 05E10
- DOI: https://doi.org/10.1090/ert/646
- MathSciNet review: 4618071