Deligne–Lusztig duality on the moduli stack of bundles
HTML articles powered by AMS MathViewer
- by Lin Chen;
- Represent. Theory 27 (2023), 608-668
- DOI: https://doi.org/10.1090/ert/645
- Published electronically: July 24, 2023
- PDF | Request permission
Abstract:
Let $\operatorname {Bun}_{G}(X)$ be the moduli stack of $G$-torsors on a smooth projective curve $X$ for a reductive group $G$. We prove a conjecture made by Drinfeld-Wang and Gaitsgory on the Deligne–Lusztig duality for D-modules on $\operatorname {Bun}_{G}(X)$. This conjecture relates the pseudo-identity functors given by Gaitsgory [Ann. Sci. Éc. Norm. Supér. (4) (2017)] and Drinfeld and Gaitsgory [Camb. J. Math. 3 (2015), pp. 19–125] to the enhanced Eisenstein series and geometric constant term functors given by Gaitsgory [Astérisque (2015)]. We also prove a “second adjointness” result for these enhanced functors.References
- Dean Alvis, The duality operation in the character ring of a finite Chevalley group, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 907–911. MR 546315, DOI 10.1090/S0273-0979-1979-14690-1
- Jonathan Barlev, $D$-modules on spaces of rational maps, Compos. Math. 150 (2014), no. 5, 835–876. MR 3209797, DOI 10.1112/S0010437X13007707
- Dario Beraldo, Deligne-Lusztig duality on the stack of local systems, J. Reine Angew. Math. 778 (2021), 31–63. MR 4308619, DOI 10.1515/crelle-2021-0030
- Joseph Bernstein, Roman Bezrukavnikov, and David Kazhdan, Deligne-Lusztig duality and wonderful compactification, Selecta Math. (N.S.) 24 (2018), no. 1, 7–20. MR 3769724, DOI 10.1007/s00029-018-0391-5
- Roman Bezrukavnikov and Alexander Yom Din, On parabolic restriction of perverse sheaves, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3-4, 1089–1107. MR 4322008, DOI 10.4171/prims/57-3-12
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI 10.1007/s00031-003-0606-4
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI 10.1007/s00222-002-0237-8
- Lin Chen, Nearby cycles on Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian and long intertwining functor, Duke Math. J. 172 (2023), no. 3, 447–543. MR 4548416, DOI 10.1215/00127094-2022-0042
- Lin Chen, Nearby cycles and dualities in geometric Langlands program, Ph.D. Thesis, 2021.
- Charles W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), no. 2, 320–332. MR 563231, DOI 10.1016/0021-8693(80)90185-4
- Pierre Deligne and George Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), no. 1, 284–291. MR 644236, DOI 10.1016/0021-8693(82)90023-0
- Vladimir Drinfeld, On algebraic spaces with an action of $G_m$, Preprint, arXiv:1308.2604 (2013).
- Vladimir Drinfeld and Dennis Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct. Anal. 23 (2013), no. 1, 149–294. MR 3037900, DOI 10.1007/s00039-012-0204-5
- Vladimir Drinfeld and Dennis Gaitsgory, On a theorem of Braden, Transformation groups 19 (2014), no. 2, 313–358.
- V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the stack of $G$-bundles on a curve, Camb. J. Math. 3 (2015), no. 1-2, 19–125. MR 3356356, DOI 10.4310/CJM.2015.v3.n1.a2
- Vladimir Drinfeld and Dennis Gaitsgory, Geometric constant term functor(s), Selecta Math. (N.S.) 22 (2016), no. 4, 1881–1951. MR 3573949, DOI 10.1007/s00029-016-0269-3
- Vladimir Drinfeld and Jonathan Wang, On a strange invariant bilinear form on the space of automorphic forms, Selecta Math. (N.S.) 22 (2016), no. 4, 1825–1880. MR 3573948, DOI 10.1007/s00029-016-0262-x
- Michael Finkelberg, Vasily Krylov, and Ivan Mirković, Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian and geometric Satake equivalence, J. Topol. 13 (2020), no. 2, 683–729. With an appendix by Dennis Gaitsgory. MR 4092778, DOI 10.1112/topo.12143
- Dennis Gaitsgory, What acts on geometric Eisenstein series, available on the author’s website, 2011.
- Dennis Gaitsgory, Outline of the proof of the geometric Langlands conjecture for GL(2), Astérisque, 370 (2015).
- Dennis Gaitsgory, A “strange” functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles, Ann. Sci. Éc. Norm. Supér., Societe Mathematique de France, (4) 2017.
- Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. MR 3701352, DOI 10.1090/surv/221.1
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra, available on the author’s website, 2012.
- Simon Schieder, The Harder-Narasimhan stratification of the moduli stack of $G$-bundles via Drinfeld’s compactifications, Selecta Math. (N.S.) 21 (2015), no. 3, 763–831. MR 3366920, DOI 10.1007/s00029-014-0161-y
- Simon Schieder, Geometric Bernstein asymptotics and the Drinfeld–Lafforgue–Vinberg degeneration for arbitrary reductive groups, Preprint, arXiv:1607.00586, 2016.
- Jonathan Wang, On the reductive monoid associated to a parabolic subgroup, J. Lie Theory 27 (2017), no. 3, 637–655. MR 3592284
- Jonathan Wang, On an invariant bilinear form on the space of automorphic forms via asymptotics, Duke Math. J. 167 (2018), no. 16, 2965–3057. MR 3870080, DOI 10.1215/00127094-2018-0025
- Alexander Yom Din, On the Deligne-Lusztig involution for character sheaves, Selecta Math. (N.S.) 25 (2019), no. 3, Paper No. 49, 21. MR 3984107, DOI 10.1007/s00029-019-0495-6
Bibliographic Information
- Lin Chen
- Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
- Address at time of publication: Yau Mathematical Sciences Center, Jingzhai, Tsinghua University, Haidian District, Beijing, People’s Republic of China
- ORCID: 0000-0002-8676-9907
- Email: kylinjchen@gmail.com
- Received by editor(s): September 12, 2021
- Received by editor(s) in revised form: January 23, 2022, February 13, 2023, and February 22, 2023
- Published electronically: July 24, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 608-668
- MSC (2020): Primary 14D24
- DOI: https://doi.org/10.1090/ert/645
- MathSciNet review: 4619506