On unipotent representations of ramified $p$-adic groups
HTML articles powered by AMS MathViewer
- by Maarten Solleveld;
- Represent. Theory 27 (2023), 669-716
- DOI: https://doi.org/10.1090/ert/652
- Published electronically: July 26, 2023
- HTML | PDF | Request permission
Abstract:
Let $G$ be any connected reductive group over a non-archimedean local field. We analyse the unipotent representations of $G$, in particular in the cases where $G$ is ramified. We establish a local Langlands correspondence for this class of representations, and we show that it satisfies all the desiderata of Borel as well as the conjecture of Hiraga, Ichino and Ikeda about formal degrees.
This generalizes work of Lusztig and of Feng, Opdam and the author, to reductive groups that do not necessarily split over an unramified extension of the ground field.
References
- James Arthur, On the transfer of distributions: weighted orbital integrals, Duke Math. J. 99 (1999), no. 2, 209–283. MR 1708030, DOI 10.1215/S0012-7094-99-09909-X
- James Arthur, A note on $L$-packets, Pure Appl. Math. Q. 2 (2006), no. 1, Special Issue: In honor of John H. Coates., 199–217. MR 2217572, DOI 10.4310/PAMQ.2006.v2.n1.a9
- Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld, Conjectures about $p$-adic groups and their noncommutative geometry, Around Langlands correspondences, Contemp. Math., vol. 691, Amer. Math. Soc., Providence, RI, 2017, pp. 15–51. MR 3666049
- Anne-Marie Aubert, Ahmed Moussaoui, and Maarten Solleveld, Generalizations of the Springer correspondence and cuspidal Langlands parameters, Manuscripta Math. 157 (2018), no. 1-2, 121–192. MR 3845761, DOI 10.1007/s00229-018-1001-8
- Anne-Marie Aubert, Ahmed Moussaoui, and Maarten Solleveld, Graded Hecke algebras for disconnected reductive groups, Geometric aspects of the trace formula, Simons Symp., Springer, Cham, 2018, pp. 23–84. MR 3969871
- A.-M. Aubert, A. Moussaoui, and M. Solleveld, Affine Hecke algebras for Langlands parameters, arXiv:1701.03593v3, 2019
- A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 27–61. MR 546608
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Colin J. Bushnell, Guy Henniart, and Philip C. Kutzko, Types and explicit Plancherel formulæfor reductive $p$-adic groups, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 55–80. MR 2767510
- Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive $p$-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–634. MR 1643417, DOI 10.1112/S0024611598000574
- Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal $L$-packets and their stability, Ann. of Math. (2) 169 (2009), no. 3, 795–901. MR 2480618, DOI 10.4007/annals.2009.169.795
- P. Dillery, Rigid inner forms over local function fields, to appear in Adv. Math., arXiv:2008.04472v3, 2020
- Yongqi Feng, A note on the spectral transfer morphism for affine Hecke algebras, J. Lie Theory 29 (2019), no. 4, 901–926. MR 4000990
- Yongqi Feng and Eric Opdam, On a uniqueness property of supercuspidal unipotent representations, Adv. Math. 375 (2020), 107406, 62. MR 4170222, DOI 10.1016/j.aim.2020.107406
- Yongqi Feng, Eric Opdam, and Maarten Solleveld, Supercuspidal unipotent representations: L-packets and formal degrees, J. Éc. polytech. Math. 7 (2020), 1133–1193 (English, with English and French summaries). MR 4167790, DOI 10.5802/jep.138
- Yongqi Feng, Eric Opdam, and Maarten Solleveld, On formal degrees of unipotent representations, J. Inst. Math. Jussieu 21 (2022), no. 6, 1947–1999. MR 4515286, DOI 10.1017/S1474748021000062
- Benedict H. Gross and Wee Teck Gan, Haar measure and the Artin conductor, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1691–1704. MR 1458303, DOI 10.1090/S0002-9947-99-02095-4
- Meinolf Geck and Gunter Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. A guided tour. MR 4211779, DOI 10.1017/9781108779081
- Benedict H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), no. 2, 287–313. MR 1474159, DOI 10.1007/s002220050186
- Benedict H. Gross and Mark Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), no. 3, 431–508. MR 2730575, DOI 10.1215/00127094-2010-043
- Kaoru Hiraga, Atsushi Ichino, and Tamotsu Ikeda, Formal degrees and adjoint $\gamma$-factors, J. Amer. Math. Soc. 21 (2008), no. 1, 283–304. MR 2350057, DOI 10.1090/S0894-0347-07-00567-X
- Tasho Kaletha, Rigid inner forms of real and $p$-adic groups, Ann. of Math. (2) 184 (2016), no. 2, 559–632. MR 3548533, DOI 10.4007/annals.2016.184.2.6
- Tasho Kaletha, Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math. 213 (2018), no. 1, 271–369. MR 3815567, DOI 10.1007/s00222-018-0791-3
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, RI, 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI 10.1155/S1073792895000353
- G. Lusztig, Classification of unipotent representations of simple $p$-adic groups. II, Represent. Theory 6 (2002), 243–289. MR 1927955, DOI 10.1090/S1088-4165-02-00173-5
- Lawrence Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), no. 1, 1–54. MR 1235019, DOI 10.1007/BF01232662
- Lawrence Morris, Tamely ramified supercuspidal representations, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 5, 639–667. MR 1399618, DOI 10.24033/asens.1750
- Lawrence Morris, Level zero $\bf G$-types, Compositio Math. 118 (1999), no. 2, 135–157. MR 1713308, DOI 10.1023/A:1001019027614
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no. 1, 98–121. MR 1371680, DOI 10.1007/BF02566411
- Eric M. Opdam, On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu 3 (2004), no. 4, 531–648. MR 2094450, DOI 10.1017/S1474748004000155
- Eric Opdam, Spectral transfer morphisms for unipotent affine Hecke algebras, Selecta Math. (N.S.) 22 (2016), no. 4, 2143–2207. MR 3573955, DOI 10.1007/s00029-016-0273-7
- Eric Opdam, Affine Hecke algebras and the conjectures of Hiraga, Ichino and Ikeda on the Plancherel density, Representations of reductive groups, Proc. Sympos. Pure Math., vol. 101, Amer. Math. Soc., Providence, RI, 2019, pp. 309–350. MR 3930022, DOI 10.1090/pspum/101/12
- G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198. With an appendix by T. Haines and Rapoport. MR 2435422, DOI 10.1016/j.aim.2008.04.006
- Allan J. Silberger and Ernst-Wilhelm Zink, Langlands classification for $L$-parameters, J. Algebra 511 (2018), 299–357. MR 3834776, DOI 10.1016/j.jalgebra.2018.06.012
- Maarten Solleveld, On completions of Hecke algebras, Representations of reductive $p$-adic groups, Progr. Math., vol. 328, Birkhäuser/Springer, Singapore, 2019, pp. 207–262. MR 3889765, DOI 10.1007/978-981-13-6628-4_{8}
- Maarten Solleveld, Langlands parameters, functoriality and Hecke algebras, Pacific J. Math. 304 (2020), no. 1, 209–302. MR 4053201, DOI 10.2140/pjm.2020.304.209
- M. Solleveld, A local Langlands correspondence for unipotent representations, Amer. J. Math. 145 (2023), no.3, 673-719.
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Marko Tadić, Notes on representations of non-Archimedean $\textrm {SL}(n)$, Pacific J. Math. 152 (1992), no. 2, 375–396. MR 1141803, DOI 10.2140/pjm.1992.152.375
- J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 3–26. MR 546607
- Nguyen Quoc Thang, On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 10, 203–208. MR 2863415
- J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, RI, 1966, pp. 33–62. MR 224710
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
- J.-L. Waldspurger, La formule de Plancherel pour les groupes $p$-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333 (French, with French summary). MR 1989693, DOI 10.1017/S1474748003000082
Bibliographic Information
- Maarten Solleveld
- Affiliation: IMAPP, Radboud Universiteit, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
- MR Author ID: 800917
- ORCID: 0000-0001-6516-6739
- Email: m.solleveld@science.ru.nl
- Received by editor(s): February 6, 2021
- Received by editor(s) in revised form: November 5, 2021, April 22, 2023, and May 9, 2023
- Published electronically: July 26, 2023
- Additional Notes: The author was supported by a NWO Vidi grant “A Hecke algebra approach to the local Langlands correspondence” (nr. 639.032.528).
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 669-716
- MSC (2020): Primary 22E50; Secondary 11S37, 20G25
- DOI: https://doi.org/10.1090/ert/652
- MathSciNet review: 4620884