Characters, commutators and centers of Sylow subgroups
HTML articles powered by AMS MathViewer
- by Gabriel Navarro and Benjamin Sambale;
- Represent. Theory 27 (2023), 717-733
- DOI: https://doi.org/10.1090/ert/653
- Published electronically: July 27, 2023
- HTML | PDF
Abstract:
The character table of a finite group $G$ determines whether $|P:P’|=p^2$ and whether $|P:\mathbf {Z}(P)|=p^2$, where $P$ is a Sylow $p$-subgroup of $G$. To prove the latter, we give a detailed classification of those groups in terms of the generalized Fitting subgroup.References
- Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834, DOI 10.1017/CBO9781139003841
- Richard Brauer, Representations of finite groups, Lectures on Modern Mathematics, Vol. I, Wiley, New York-London, 1963, pp. 133–175. MR 178056
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Zhicheng Feng, Conghui Li, Yanjun Liu, Gunter Malle, and Jiping Zhang, Robinson’s conjecture on heights of characters, Compos. Math. 155 (2019), no. 6, 1098–1117. MR 3952498, DOI 10.1112/s0010437x19007267
- Ramón J. Flores and Richard M. Foote, Strongly closed subgroups of finite groups, Adv. Math. 222 (2009), no. 2, 453–484. MR 2538017, DOI 10.1016/j.aim.2009.05.005
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0; 2020, http://www.gap-system.org.
- Robert Gilman and Daniel Gorenstein, Finite groups with Sylow $2$-subgroups of class two. I, II, Trans. Amer. Math. Soc. 207 (1975), 1–101; ibid. 207 (1975), 103–126. MR 379662, DOI 10.1090/S0002-9947-1975-99937-3
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822, DOI 10.1016/0021-8693(66)90030-5
- V. Grazian and C. Parker, Saturated fusion systems on $p$-groups of maximal class, to appear in Mem. Amer. Math. Soc., 2023, arXiv:2011.05011
- Fletcher Gross, Automorphisms which centralize a Sylow $p$-subgroup, J. Algebra 77 (1982), no. 1, 202–233. MR 665174, DOI 10.1016/0021-8693(82)90287-3
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 224703, DOI 10.1007/978-3-642-64981-3
- I. Martin Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR 2270898, DOI 10.1090/chel/359
- I. Martin Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR 2426855, DOI 10.1090/gsm/092
- Wolfgang Kimmerle, Beiträge zur ganzzahligen Darstellungstheorie endlicher Gruppen, Bayreuth. Math. Schr. 36 (1991), 139 (German). MR 1104522
- Wolfgang Kimmerle, Richard Lyons, Robert Sandling, and David N. Teague, Composition factors from the group ring and Artin’s theorem on orders of simple groups, Proc. London Math. Soc. (3) 60 (1990), no. 1, 89–122. MR 1023806, DOI 10.1112/plms/s3-60.1.89
- Radha Kessar and Gunter Malle, Quasi-isolated blocks and Brauer’s height zero conjecture, Ann. of Math. (2) 178 (2013), no. 1, 321–384. MR 3043583, DOI 10.4007/annals.2013.178.1.6
- Wolfgang Kimmerle and Robert Sandling, Group-theoretic and group ring-theoretic determination of certain Sylow and Hall subgroups and the resolution of a question of R. Brauer, J. Algebra 171 (1995), no. 2, 329–346. MR 1315899, DOI 10.1006/jabr.1995.1014
- Gunter Malle, The Navarro-Tiep Galois conjecture for $p=2$, Arch. Math. (Basel) 112 (2019), no. 5, 449–457. MR 3943465, DOI 10.1007/s00013-019-01298-6
- Gunter Malle and Gabriel Navarro, Brauer’s Height Zero Conjecture for principal blocks, J. Reine Angew. Math. 778 (2021), 119–125. MR 4308615, DOI 10.1515/crelle-2021-0024
- Sandro Mattarei, An example of $p$-groups with identical character tables and different derived lengths, Arch. Math. (Basel) 62 (1994), no. 1, 12–20. MR 1249579, DOI 10.1007/BF01200432
- Gabriel Navarro, The McKay conjecture and Galois automorphisms, Ann. of Math. (2) 160 (2004), no. 3, 1129–1140. MR 2144975, DOI 10.4007/annals.2004.160.1129
- Gabriel Navarro, Character theory and the McKay conjecture, Cambridge Studies in Advanced Mathematics, vol. 175, Cambridge University Press, Cambridge, 2018. MR 3753712, DOI 10.1017/9781108552790
- Gabriel Navarro, Noelia Rizo, A. A. Schaeffer Fry, and Carolina Vallejo, Characters and generation of Sylow 2-subgroups, Represent. Theory 25 (2021), 142–165. MR 4220651, DOI 10.1090/ert/555
- Gabriel Navarro, Benjamin Sambale, and Pham Huu Tiep, Characters and Sylow 2-subgroups of maximal class revisited, J. Pure Appl. Algebra 222 (2018), no. 11, 3721–3732. MR 3806747, DOI 10.1016/j.jpaa.2018.02.002
- Gabriel Navarro, Ronald Solomon, and Pham Huu Tiep, Abelian Sylow subgroups in a finite group, II, J. Algebra 421 (2015), 3–11. MR 3272370, DOI 10.1016/j.jalgebra.2014.08.012
- Gabriel Navarro and Pham Huu Tiep, Sylow subgroups, exponents, and character values, Trans. Amer. Math. Soc. 372 (2019), no. 6, 4263–4291. MR 4009430, DOI 10.1090/tran/7816
- Bob Oliver, Simple fusion systems over $p$-groups with abelian subgroup of index $p$: I, J. Algebra 398 (2014), 527–541. MR 3123784, DOI 10.1016/j.jalgebra.2013.09.012
- Geoffrey R. Robinson, Local structure, vertices and Alperin’s conjecture, Proc. London Math. Soc. (3) 72 (1996), no. 2, 312–330. MR 1367081, DOI 10.1112/plms/s3-72.2.312
- Benjamin Sambale, Blocks of finite groups and their invariants, Lecture Notes in Mathematics, vol. 2127, Springer, Cham, 2014. MR 3289382, DOI 10.1007/978-3-319-12006-5
- G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1–62. MR 150210, DOI 10.1017/S1446788700027622
- A. J. Weir, Sylow $p$-subgroups of the classical groups over finite fields with characteristic prime to $p$, Proc. Amer. Math. Soc. 6 (1955), 529–533. MR 72143, DOI 10.1090/S0002-9939-1955-0072143-9
- Robert A. Wilson, The McKay conjecture is true for the sporadic simple groups, J. Algebra 207 (1998), no. 1, 294–305. MR 1643110, DOI 10.1006/jabr.1998.7450
- Robert A. Wilson, The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag London, Ltd., London, 2009. MR 2562037, DOI 10.1007/978-1-84800-988-2
Bibliographic Information
- Gabriel Navarro
- Affiliation: Department of Mathematics, Universitat de València, 46100 Burjassot, València, Spain
- MR Author ID: 129760
- Email: gabriel@uv.es
- Benjamin Sambale
- Affiliation: Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- MR Author ID: 928720
- ORCID: 0000-0001-9914-1652
- Email: sambale@math.uni-hannover.de
- Received by editor(s): April 8, 2022
- Received by editor(s) in revised form: March 16, 2023, and May 8, 2023
- Published electronically: July 27, 2023
- Additional Notes: The first author was supported by the Ministerio de Ciencia e Innovación PID2019-103854GB-I00. The second author was supported by the German Research Foundation (projects SA 2864/1-2 and SA 2864/3-1).
- © Copyright 2023 Copyright by the authors
- Journal: Represent. Theory 27 (2023), 717-733
- MSC (2020): Primary 20C15; Secondary 20C20
- DOI: https://doi.org/10.1090/ert/653
- MathSciNet review: 4620885