On the extended weight monoid of a spherical homogeneous space and its applications to spherical functions
HTML articles powered by AMS MathViewer
- by Guido Pezzini and Maarten van Pruijssen;
- Represent. Theory 27 (2023), 815-886
- DOI: https://doi.org/10.1090/ert/647
- Published electronically: September 15, 2023
- HTML | PDF | Request permission
Abstract:
Given a connected simply connected semisimple group $G$ and a connected spherical subgroup $K\subseteq G$ we determine the generators of the extended weight monoid of $G/K$, based on the homogeneous spherical datum of $G/K$.
Let $H\subseteq G$ be a reductive subgroup and let $P\subseteq H$ be a parabolic subgroup for which $G/P$ is spherical. A triple $(G,H,P)$ with this property is called multiplicity free system and we determine the generators of the extended weight monoid of $G/P$ explicitly in the cases where $(G,H)$ is strictly indecomposable.
The extended weight monoid of $G/P$ describes the induction from $H$ to $G$ of an irreducible $H$-representation $\pi :H\to \operatorname {GL}(V)$ whose lowest weight is a character of $P$. The space of regular $\operatorname {End}(V)$-valued functions on $G$ that satisfy $F(h_{1}gh_{2})=\pi (h_{1})F(g)\pi (h_{2})$ for all $h_{1},h_{2}\in H$ and all $g\in G$ is a module over the algebra of $H$-biinvariant regular functions on $G$. We show that under a mild assumption this module is freely and finitely generated. As a consequence the spherical functions of such a type $\pi$ can be described as a family of vector-valued orthogonal polynomials with properties similar to Jacobi polynomials.
References
- Roman Avdeev, On extended weight monoids of spherical homogeneous spaces, Transform. Groups 26 (2021), no. 2, 403–431. MR 4283322, DOI 10.1007/s00031-021-09642-3
- R. S. Avdeev, Extended weight semigroups of affine spherical homogeneous spaces of nonsimple semisimple algebraic groups, Izv. Ross. Akad. Nauk Ser. Mat. 74 (2010), no. 6, 3–26 (Russian, with Russian summary); English transl., Izv. Math. 74 (2010), no. 6, 1103–1126. MR 2779106, DOI 10.1070/IM2010v074n06ABEH002518
- R. S. Avdeev, Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup, Mat. Sb. 203 (2012), no. 11, 3–22 (Russian, with Russian summary); English transl., Sb. Math. 203 (2012), no. 11-12, 1535–1552. MR 3053223, DOI 10.1070/SM2012v203n11ABEH004274
- Roman Avdeev, Strongly solvable spherical subgroups and their combinatorial invariants, Selecta Math. (N.S.) 21 (2015), no. 3, 931–993. MR 3366923, DOI 10.1007/s00029-015-0180-3
- R. S. Avdeev and N. E. Gorfinkel′, Harmonic analysis on spherical homogeneous spaces with solvable stabilizer, Funktsional. Anal. i Prilozhen. 46 (2012), no. 3, 1–15 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 46 (2012), no. 3, 161–172. MR 3075037, DOI 10.1007/s10688-012-0023-3
- Paolo Bravi, Wonderful varieties of type $\mathsf E$, Represent. Theory 11 (2007), 174–191. MR 2346359, DOI 10.1090/S1088-4165-07-00318-4
- P. Bravi and D. Luna, An introduction to wonderful varieties with many examples of type $\rm F_4$, J. Algebra 329 (2011), 4–51. MR 2769314, DOI 10.1016/j.jalgebra.2010.01.025
- Paolo Bravi and Guido Pezzini, Wonderful varieties of type $D$, Represent. Theory 9 (2005), 578–637. MR 2183057, DOI 10.1090/S1088-4165-05-00260-8
- P. Bravi and G. Pezzini, Wonderful subgroups of reductive groups and spherical systems, J. Algebra 409 (2014), 101–147. MR 3198836, DOI 10.1016/j.jalgebra.2014.03.018
- P. Bravi and G. Pezzini, The spherical systems of the wonderful reductive subgroups, J. Lie Theory 25 (2015), no. 1, 105–123. MR 3345829
- M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), no. 2, 189–208 (French). MR 906369
- Michel Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1, 61–99. MR 2326138, DOI 10.1016/j.jalgebra.2006.12.022
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Selected Papers by E. B. Dynkin with Commentary, American Mathematical Society, Providence, 2000.
- A. Foschi, Variétés magnifiques et polytopes moment, Ph.D. Thesis, Université de Grenoble I, 1998.
- J. Gandini, Spherical orbit closures in simple projective spaces and their normalizations, Transform. Groups 16 (2011), no. 1, 109–136. MR 2785497, DOI 10.1007/s00031-011-9120-2
- Xuhua He, Kyo Nishiyama, Hiroyuki Ochiai, and Yoshiki Oshima, On orbits in double flag varieties for symmetric pairs, Transform. Groups 18 (2013), no. 4, 1091–1136. MR 3127988, DOI 10.1007/s00031-013-9243-8
- Gert Heckman and Maarten van Pruijssen, Matrix valued orthogonal polynomials for Gelfand pairs of rank one, Tohoku Math. J. (2) 68 (2016), no. 3, 407–437. MR 3550926, DOI 10.2748/tmj/1474652266
- Friedrich Knop, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), no. 1, 1–23 (German, with English summary). MR 1029388, DOI 10.1007/BF01234409
- Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 225–249. MR 1131314
- Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. MR 1311823, DOI 10.1090/S0894-0347-96-00179-8
- Friedrich Knop, Localization of spherical varieties, Algebra Number Theory 8 (2014), no. 3, 703–728. MR 3218807, DOI 10.2140/ant.2014.8.703
- Erik Koelink and Jie Liu, $BC_{2}$ type multivariable matrix functions and matrix spherical functions, Publ. RIMS, to appear, arXiv:2110.02287.
- Erik Koelink, Maarten van Pruijssen, and Pablo Román, Matrix elements of irreducible representations of $\textrm {SU}(n+1)\times \textrm {SU}(n+1)$ and multivariable matrix-valued orthogonal polynomials, J. Funct. Anal. 278 (2020), no. 7, 108411, 48. MR 4053617, DOI 10.1016/j.jfa.2019.108411
- Manfred Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), no. 2, 129–153 (German). MR 528837
- Ivan V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315–343. MR 2495078, DOI 10.1215/00127094-2009-013
- D. Luna, Variétés sphériques de type $A$, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226 (French). MR 1896179, DOI 10.1007/s10240-001-8194-0
- Guido Pezzini, On reductive automorphism groups of regular embeddings, Transform. Groups 20 (2015), no. 1, 247–289. MR 3317802, DOI 10.1007/s00031-015-9304-2
- Guido Pezzini and Bart Van Steirteghem, Combinatorial characterization of the weight monoids of smooth affine spherical varieties, Trans. Amer. Math. Soc. 372 (2019), no. 4, 2875–2919. MR 3988597, DOI 10.1090/tran/7785
- T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713, DOI 10.1007/978-0-8176-4840-4
- Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138, Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2797018, DOI 10.1007/978-3-642-18399-7
- Maarten van Pruijssen, Multiplicity free induced representations and orthogonal polynomials, Int. Math. Res. Not. IMRN 7 (2018), 2208–2239. MR 3801483, DOI 10.1093/imrn/rnw295
- Thierry Vust, Plongements d’espaces symétriques algébriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 2, 165–195 (French). MR 1076251
- B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), no. 4, 375–403. MR 1424449, DOI 10.1007/BF02549213
Bibliographic Information
- Guido Pezzini
- Affiliation: Dipartimento di Matematica “G. Castelnuovo” Sapienza Universitã di Roma, 00185 Roma RM, Italy
- MR Author ID: 772887
- Email: pezzini@mat.uniroma1.it
- Maarten van Pruijssen
- Affiliation: Department of Mathematics Radboud Universiteit Nijmegen, 6525 AJ Nijmegen, Netherlands
- MR Author ID: 1004141
- Email: m.vanpruijssen@math.ru.nl
- Received by editor(s): November 21, 2022
- Received by editor(s) in revised form: March 10, 2023
- Published electronically: September 15, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 815-886
- MSC (2020): Primary 14M27, 33C45
- DOI: https://doi.org/10.1090/ert/647
- MathSciNet review: 4642865