Restriction of irreducible unitary representations of $\operatorname {Spin}(N,1)$ to parabolic subgroups
HTML articles powered by AMS MathViewer
- by Gang Liu, Yoshiki Oshima and Jun Yu;
- Represent. Theory 27 (2023), 887-932
- DOI: https://doi.org/10.1090/ert/658
- Published electronically: September 21, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we obtain explicit branching laws for all irreducible unitary representations of $G=\operatorname {Spin}(N,1)$ when restricted to a parabolic subgroup $P$. The restriction turns out to be a finite direct sum of irreducible unitary representations of $P$. We also verify Duflo’s conjecture for the branching laws of discrete series representations of $G$ with respect to $P$. That is to show: in the framework of the orbit method, the branching law of a discrete series representation is determined by some geometric behavior of the moment map for the corresponding coadjoint orbit.References
- Avraham Aizenbud, Dmitry Gourevitch, and Siddhartha Sahi, Twisted homology for the mirabolic nilradical, Israel J. Math. 206 (2015), no. 1, 39–88. MR 3319630, DOI 10.1007/s11856-014-1150-3
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744
- Ehud Moshe Baruch, A proof of Kirillov’s conjecture, Ann. of Math. (2) 158 (2003), no. 1, 207–252. MR 1999922, DOI 10.4007/annals.2003.158.207
- Joseph N. Bernstein, $P$-invariant distributions on $\textrm {GL}(N)$ and the classification of unitary representations of $\textrm {GL}(N)$ (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102. MR 748505, DOI 10.1007/BFb0073145
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $G$, Canad. J. Math. 41 (1989), no. 3, 385–438. MR 1013462, DOI 10.4153/CJM-1989-019-5
- William Casselman, Henryk Hecht, and Dragan Miličić, Bruhat filtrations and Whittaker vectors for real groups, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 151–190. MR 1767896, DOI 10.1090/pspum/068/1767896
- William Casselman and M. Scott Osborne, The restriction of admissible representations to ${\mathfrak {n}}$, Math. Ann. 233 (1978), no. 3, 193–198. MR 480884, DOI 10.1007/BF01405350
- David H. Collingwood, Representations of rank one Lie groups, Research Notes in Mathematics, vol. 137, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 853731
- Lawrence Corwin and Frederick P. Greenleaf, Spectrum and multiplicities for restrictions of unitary representations in nilpotent Lie groups, Pacific J. Math. 135 (1988), no. 2, 233–267. MR 968611, DOI 10.2140/pjm.1988.135.233
- Fokko du Cloux, Sur les représentations différentiables des groupes de Lie algébriques, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 3, 257–318 (French). MR 1100992, DOI 10.24033/asens.1628
- Michel Duflo, On the Plancherel formula for almost algebraic real Lie groups, Lie group representations, III (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1077, Springer, Berlin, 1984, pp. 101–165. MR 765553, DOI 10.1007/BFb0072338
- Michel Duflo and Jorge Antonio Vargas, Branching laws for square integrable representations, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 3, 49–54. MR 2641797
- Alexander Dvorsky and Siddhartha Sahi, Explicit Hilbert spaces for certain unipotent representations. II, Invent. Math. 138 (1999), no. 1, 203–224. MR 1714342, DOI 10.1007/s002220050347
- Raymond C. Fabec, Localizable representations of the de Sitter group, J. Analyse Math. 35 (1979), 151–208. MR 555303, DOI 10.1007/BF02791065
- Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Symplectic local root numbers, central critical $L$ values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1–109 (English, with English and French summaries). Sur les conjectures de Gross et Prasad. I. MR 3202556
- Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Branching laws for classical groups: the non-tempered case, Compos. Math. 156 (2020), no. 11, 2298–2367. MR 4190046, DOI 10.1112/S0010437X20007496
- Raul Gomez and Nolan Wallach, Bessel models for general admissible induced representations: the compact stabilizer case, Selecta Math. (N.S.) 18 (2012), no. 1, 1–26. MR 2891860, DOI 10.1007/s00029-011-0062-2
- Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486, DOI 10.1007/978-0-387-79852-3
- B. Gross and N. Wallach, Restriction of small discrete series representations to symmetric subgroups, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 255–272. MR 1767899, DOI 10.1090/pspum/068/1767899
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI 10.1007/BF01398934
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Joachim Hilgert, Toshiyuki Kobayashi, and Jan Möllers, Minimal representations via Bessel operators, J. Math. Soc. Japan 66 (2014), no. 2, 349–414. MR 3201818, DOI 10.2969/jmsj/06620349
- Takeshi Hirai, On irreducible representations of the Lorentz group of $n-\textrm {th}$ order, Proc. Japan Acad. 38 (1962), 258–262. MR 191436
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI 10.1016/0022-1236(79)90078-8
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4(106), 57–110 (Russian). MR 142001
- A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175, DOI 10.1090/gsm/064
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- Anthony W. Knapp and David A. Vogan Jr., Cohomological induction and unitary representations, Princeton Mathematical Series, vol. 45, Princeton University Press, Princeton, NJ, 1995. MR 1330919, DOI 10.1515/9781400883936
- Toshiyuki Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak {q}}(\lambda )$ with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), no. 2, 181–205. MR 1273263, DOI 10.1007/BF01232239
- Toshiyuki Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak {q}}(\lambda )$ with respect to reductive subgroups. II. Micro-local analysis and asymptotic $K$-support, Ann. of Math. (2) 147 (1998), no. 3, 709–729. MR 1637667, DOI 10.2307/120963
- Toshiyuki Kobayashi, Discrete decomposability of the restriction of $A_{\mathfrak {q}}(\lambda )$ with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), no. 2, 229–256. MR 1608642, DOI 10.1007/s002220050203
- Toshiyuki Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, Representation theory and automorphic forms, Progr. Math., vol. 255, Birkhäuser Boston, Boston, MA, 2008, pp. 45–109. MR 2369496, DOI 10.1007/978-0-8176-4646-2_{3}
- Toshiyuki Kobayashi and Salma Nasrin, Geometry of coadjoint orbits and multiplicity-one branching laws for symmetric pairs, Algebr. Represent. Theory 21 (2018), no. 5, 1023–1036. MR 3855672, DOI 10.1007/s10468-018-9810-8
- Toshiyuki Kobayashi and Bent Ørsted, Analysis on the minimal representation of $\mathrm O(p,q)$. III. Ultrahyperbolic equations on ${\Bbb R}^{p-1,q-1}$, Adv. Math. 180 (2003), no. 2, 551–595. MR 2020552, DOI 10.1016/S0001-8708(03)00014-8
- Toshiyuki Kobayashi and Birgit Speh, Symmetry breaking for representations of rank one orthogonal groups II, Lecture Notes in Mathematics, vol. 2234, Springer, Singapore, 2018. MR 3839339, DOI 10.1007/978-981-13-2901-2
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin-New York, 1970, pp. 87–208. MR 294568
- Gang Liu, Restriction des séries discrètes de $\textrm {SU}(2,1)$ à un sous-groupe de Borel, J. Lie Theory 23 (2013), no. 4, 1161–1189 (French, with English summary). MR 3185218
- Gang Liu, Sur la notion “faiblement propre” dans la conjecture de Duflo, J. Funct. Anal. 264 (2013), no. 1, 403–412 (French, with English summary). MR 2995713, DOI 10.1016/j.jfa.2012.10.017
- Gang Liu, Duflo’s conjecture for the branching problem to the Iwasawa $AN$-subgroup of a semisimple Lie group, Math. Ann. 362 (2015), no. 1-2, 107–120. MR 3343871, DOI 10.1007/s00208-014-1102-y
- G. Liu and J. Yu, A geometric interpretation of Kirillov’s conjecture, Preprint, arXiv:1806.06318, 2018.
- Robert P. Martin, Tensor products for $\textrm {SL}(2,\,k)$, Trans. Amer. Math. Soc. 239 (1978), 197–211. MR 487045, DOI 10.1090/S0002-9947-1978-0487045-3
- J. Möllers, Minimal representations of conformal groups and generalized Laguerre functions, Ph.D. Thesis, Universität Paderborn, Institut für Mathematik, arXiv:1009.4549, 2010.
- Jan Möllers and Yoshiki Oshima, Restriction of most degenerate representations of $O(1,N)$ with respect to symmetric pairs, J. Math. Sci. Univ. Tokyo 22 (2015), no. 1, 279–338. MR 3329198
- Jan Möllers and Yoshiki Oshima, Discrete branching laws for minimal holomorphic representations, J. Lie Theory 25 (2015), no. 4, 949–983. MR 3345043
- Yoshiki Oshima, On the restriction of Zuckerman’s derived functor modules $A_q(\lambda )$ to reductive subgroups, Amer. J. Math. 137 (2015), no. 4, 1099–1138. MR 3372316, DOI 10.1353/ajm.2015.0026
- Paul-Emile Paradan, Spin-quantization commutes with reduction, J. Symplectic Geom. 10 (2012), no. 3, 389–422. MR 2983435, DOI 10.4310/JSG.2012.v10.n3.a2
- Hugo Rossi and Michèle Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Functional Analysis 13 (1973), 324–389. MR 407206, DOI 10.1016/0022-1236(73)90056-6
- Siddhartha Sahi, On Kirillov’s conjecture for Archimedean fields, Compositio Math. 72 (1989), no. 1, 67–86. MR 1026329
- Siddhartha Sahi, A simple construction of Stein’s complementary series representations, Proc. Amer. Math. Soc. 108 (1990), no. 1, 257–266. MR 984813, DOI 10.1090/S0002-9939-1990-0984813-7
- Siddhartha Sahi and Elias M. Stein, Analysis in matrix space and Speh’s representations, Invent. Math. 101 (1990), no. 2, 379–393. MR 1062967, DOI 10.1007/BF01231507
- Hideko Sekiguchi, Branching rules of singular unitary representations with respect to symmetric pairs $(A_{2n-1},D_n)$, Internat. J. Math. 24 (2013), no. 4, 1350011, 25. MR 3062964, DOI 10.1142/S0129167X13500110
- David A. Vogan Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser, Boston, MA, 1981. MR 632407
- Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR 1170566
- Joseph A. Wolf, Unitary representations of maximal parabolic subgroups of the classical groups, Mem. Amer. Math. Soc. 8 (1976), no. 180, iii+193. MR 444847, DOI 10.1090/memo/0180
- Gregg Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (2) 106 (1977), no. 2, 295–308. MR 457636, DOI 10.2307/1971097
Bibliographic Information
- Gang Liu
- Affiliation: Institut Elie Cartan de Lorraine, CNRS-UMR 7502, Université de Lorraine, 3 rue Augustin Fresnel, 57045 Metz, France
- Email: gang.liu@univ-lorraine.fr
- Yoshiki Oshima
- Affiliation: Graduate School of Mathematical Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
- MR Author ID: 990384
- Email: yoshima@ms.u-tokyo.ac.jp
- Jun Yu
- Affiliation: Beijing International Center for Mathematical Research and School of Mathematical Sciences, Peking University, No. 5 Yiheyuan Road, Beijing 100871, People’s Republic of China
- ORCID: 0000-0003-3663-3099
- Email: junyu@bicmr.pku.edu.cn
- Received by editor(s): December 18, 2022
- Received by editor(s) in revised form: May 5, 2023, May 12, 2023, and July 3, 2023
- Published electronically: September 21, 2023
- Additional Notes: The second named author was partially supported by JSPS Kakenhi Grant Number JP16K17562. The third named author was partially supported by the NSFC Grant 11971036.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 887-932
- MSC (2020): Primary 22E46
- DOI: https://doi.org/10.1090/ert/658
- MathSciNet review: 4644200