On the generalised Springer correspondence for groups of type $E_8$
HTML articles powered by AMS MathViewer
- by Jonas Hetz;
- Represent. Theory 27 (2023), 973-999
- DOI: https://doi.org/10.1090/ert/661
- Published electronically: October 19, 2023
- HTML | PDF | Request permission
Abstract:
We complete the determination of the generalised Springer correspondence for connected reductive algebraic groups, by proving a conjecture of Lusztig on the last open cases which occur for groups of type $E_8$.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 632548
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- François Digne and Jean Michel, On Lusztig’s parametrization of characters of finite groups of Lie type, Astérisque 181-182 (1990), 6, 113–156 (English, with French summary). MR 1051245
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 95, Cambridge University Press, Cambridge, 2020. Second edition of [ 1118841]. MR 4211777, DOI 10.1017/9781108673655
- Mohammad Eftekhari, Descente de Shintani des faisceaux caractères, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 4, 305–308 (French, with English and French summaries). MR 1267605
- Meinolf Geck, Some applications of CHEVIE to the theory of algebraic groups, Carpathian J. Math. 27 (2011), no. 1, 64–94. MR 2848127, DOI 10.37193/CJM.2011.01.07
- Meinolf Geck and Gunter Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. A guided tour. MR 4211779, DOI 10.1017/9781108779081
- Meinolf Geck and Jean Michel, “Good” elements of finite Coxeter groups and representations of Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 74 (1997), no. 2, 275–305. MR 1425324, DOI 10.1112/S0024611597000105
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101–159. MR 453885, DOI 10.1007/BF01408569
- George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, RI, 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. MR 518617, DOI 10.1090/cbms/039
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237. MR 792706, DOI 10.1016/0001-8708(85)90034-9
- George Lusztig, Character sheaves \rom{2}, Adv. in Math. 57 (1985), 226–265.
- George Lusztig, Character sheaves \rom{3}, Adv. in Math. 57 (1985), 266–315.
- George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1–63. MR 825086, DOI 10.1016/0001-8708(86)90036-8
- George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155. MR 849848, DOI 10.1016/0001-8708(86)90071-X
- George Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Algebra 104 (1986), no. 1, 146–194. MR 865898, DOI 10.1016/0021-8693(86)90245-0
- George Lusztig, Introduction to character sheaves, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 165–179. MR 933358, DOI 10.1090/pspum/047.1/933358
- G. Lusztig, Character sheaves on disconnected groups. IV, Represent. Theory 8 (2004), 145–178. MR 2048590, DOI 10.1090/S1088-4165-04-00240-7
- G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory 15 (2011), 494–530. MR 2833465, DOI 10.1090/S1088-4165-2011-00396-4
- G. Lusztig, Elliptic elements in a Weyl group: a homogeneity property, Represent. Theory 16 (2012), 127–151. MR 2888173, DOI 10.1090/S1088-4165-2012-00409-5
- G. Lusztig, On the cleanness of cuspidal character sheaves, Mosc. Math. J. 12 (2012), no. 3, 621–631, 669 (English, with English and Russian summaries). MR 3024826, DOI 10.17323/1609-4514-2012-12-3-621-631
- G. Lusztig, Restriction of a character sheaf to conjugacy classes, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 3, 297–309. MR 3410258
- G. Lusztig, Unipotent representations as a categorical centre, Represent. Theory 19 (2015), 211–235. MR 3416310, DOI 10.1090/ert/468
- G. Lusztig, On the generalized Springer correspondence, Representations of reductive groups, Proc. Sympos. Pure Math., vol. 101, Amer. Math. Soc., Providence, RI, 2019, pp. 219–253. MR 3930020, DOI 10.1090/pspum/101/10
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- Jean Michel, The development version of the CHEVIE package of GAP3, J. Algebra 435 (2015), 308–336. MR 3343221, DOI 10.1016/j.jalgebra.2015.03.031
- Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups $E_{7}$ and $E_{8}$, Tokyo J. Math. 3 (1980), no. 2, 391–461. MR 605099, DOI 10.3836/tjm/1270473003
- Toshiaki Shoji, Geometry of orbits and Springer correspondence, Astérisque 168 (1988), 9, 61–140. Orbites unipotentes et représentations, I. MR 1021493
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups, Adv. Math. 111 (1995), 244–313.
- Toshiaki Shoji, Character sheaves and almost characters of reductive groups, II, Adv. Math. 111 (1995), 314–354.
- N. Spaltenstein, On the generalized Springer correspondence for exceptional groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 317–338. MR 803340, DOI 10.2969/aspm/00610317
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
Bibliographic Information
- Jonas Hetz
- Affiliation: Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen, Pontdriesch 14/16, 52062 Aachen, Germany
- MR Author ID: 1334861
- ORCID: 0009-0009-5215-4849
- Email: jonas.hetz@rwth-aachen.de
- Received by editor(s): March 6, 2023
- Received by editor(s) in revised form: June 21, 2023, July 30, 2023, and August 16, 2023
- Published electronically: October 19, 2023
- Additional Notes: The author was supported by the Deutsche Forschungsgemeinschaft — Project-ID 286237555 – TRR 195.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 973-999
- MSC (2020): Primary 20C33; Secondary 20G40, 20G41
- DOI: https://doi.org/10.1090/ert/661
- MathSciNet review: 4657214