Braid group action and quasi-split affine $\imath$quantum groups I
HTML articles powered by AMS MathViewer
- by Ming Lu, Weiqiang Wang and Weinan Zhang;
- Represent. Theory 27 (2023), 1000-1040
- DOI: https://doi.org/10.1090/ert/657
- Published electronically: October 25, 2023
- HTML | PDF | Request permission
Abstract:
This is the first of our papers on quasi-split affine quantum symmetric pairs $\big (\widetilde {\mathbf U}(\widehat {\mathfrak g}), \widetilde {{\mathbf U}}^\imath \big )$, focusing on the real rank one case, i.e., $\mathfrak g = \mathfrak {sl}_3$ equipped with a diagram involution. We construct explicitly a relative braid group action of type $A_2^{(2)}$ on the affine $\imath$quantum group $\widetilde {{\mathbf U}}^\imath$. Real and imaginary root vectors for $\widetilde {{\mathbf U}}^\imath$ are constructed, and a Drinfeld type presentation of $\widetilde {{\mathbf U}}^\imath$ is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine $\imath$quantum groups in the sequels.References
- Pascal Baseilhac and Samuel Belliard, Generalized $q$-Onsager algebras and boundary affine Toda field theories, Lett. Math. Phys. 93 (2010), no. 3, 213–228. MR 2679971, DOI 10.1007/s11005-010-0412-6
- Pascal Baseilhac and Kozo Koizumi, A new (in)finite-dimensional algebra for quantum integrable models, Nuclear Phys. B 720 (2005), no. 3, 325–347. MR 2153659, DOI 10.1016/j.nuclphysb.2005.05.021
- Pascal Baseilhac and Stefan Kolb, Braid group action and root vectors for the $q$-Onsager algebra, Transform. Groups 25 (2020), no. 2, 363–389. MR 4098883, DOI 10.1007/s00031-020-09555-7
- Huanchen Bao and Weiqiang Wang, A new approach to Kazhdan-Lusztig theory of type $B$ via quantum symmetric pairs, Astérisque 402 (2018), vii+134 (English, with English and French summaries). MR 3864017
- Jonathan Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 3, 555–568. MR 1301623, DOI 10.1007/BF02099423
- Vyjayanthi Chari and David Hernandez, Beyond Kirillov-Reshetikhin modules, Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, pp. 49–81. MR 2642561, DOI 10.1090/conm/506/09935
- Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), no. 2, 261–283. MR 1137064, DOI 10.1007/BF02102063
- Xinhong Chen, Ming Lu, and Weiqiang Wang, A Serre presentation for the ıquantum groups, Transform. Groups 26 (2021), no. 3, 827–857. MR 4309551, DOI 10.1007/s00031-020-09581-5
- Ilaria Damiani, A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of $\widehat {\mathrm {sl}}(2)$, J. Algebra 161 (1993), no. 2, 291–310. MR 1247357, DOI 10.1006/jabr.1993.1220
- Ilaria Damiani, The $R$-matrix for (twisted) affine quantum algebras, Representations and quantizations (Shanghai, 1998) China High. Educ. Press, Beijing, 2000, pp. 89–144. MR 1802170
- Ilaria Damiani, From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: injectivity, Publ. Res. Inst. Math. Sci. 51 (2015), no. 1, 131–171. MR 3367090, DOI 10.4171/PRIMS/150
- Liam Dobson and Stefan Kolb, Factorisation of quasi $K$-matrices for quantum symmetric pairs, Selecta Math. (N.S.) 25 (2019), no. 4, Paper No. 63, 55. MR 4021849, DOI 10.1007/s00029-019-0508-5
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, and Weiqiang Wang, Affine flag varieties and quantum symmetric pairs, Mem. Amer. Math. Soc. 265 (2020), no. 1285, v+123. MR 4080913, DOI 10.1090/memo/1285
- Edward Frenkel and Evgeny Mukhin, Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23–57. MR 1810773, DOI 10.1007/s002200000323
- Edward Frenkel and Nicolai Reshetikhin, The $q$-characters of representations of quantum affine algebras and deformations of $\scr W$-algebras, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 163–205. MR 1745260, DOI 10.1090/conm/248/03823
- Stefan Kolb and Jacopo Pellegrini, Braid group actions on coideal subalgebras of quantized enveloping algebras, J. Algebra 336 (2011), 395–416. MR 2802552, DOI 10.1016/j.jalgebra.2011.04.001
- Stefan Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469. MR 3269184, DOI 10.1016/j.aim.2014.08.010
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- Gail Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165. MR 1913438
- M. Lu and S. Ruan, $\imath$Hall algebras of weighted projective lines and quantum symmetric pairs, arXiv:2110.02575, 2021
- Ming Lu, Shiquan Ruan, and Weiqiang Wang, $\imath$Hall algebra of the projective line and $q$-Onsager algebra, Trans. Amer. Math. Soc. 376 (2023), no. 2, 1475–1505. MR 4531682, DOI 10.1090/tran/8798
- Ming Lu and Weiqiang Wang, Hall algebras and quantum symmetric pairs II: Reflection functors, Comm. Math. Phys. 381 (2021), no. 3, 799–855. MR 4218672, DOI 10.1007/s00220-021-03965-8
- Ming Lu and Weiqiang Wang, A Drinfeld type presentation of affine $\imath$quantum groups I: Split ADE type, Adv. Math. 393 (2021), Paper No. 108111, 46. MR 4340233, DOI 10.1016/j.aim.2021.108111
- Ming Lu and Weiqiang Wang, Hall algebras and quantum symmetric pairs I: Foundations, Proc. Lond. Math. Soc. (3) 124 (2022), no. 1, 1–82. With an appendix by Lu. MR 4389313, DOI 10.1112/plms.12423
- Ming Lu and Weiqiang Wang, Braid group symmetries on quasi-split $\imath$quantum groups via $\imath$Hall algebras, Selecta Math. (N.S.) 28 (2022), no. 5, Paper No. 84, 64. MR 4486230, DOI 10.1007/s00029-022-00800-3
- George Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010. Reprint of the 1994 edition. MR 2759715, DOI 10.1007/978-0-8176-4717-9
- Alexander Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI, 2007. MR 2355506, DOI 10.1090/surv/143
- Paul Terwilliger, The Lusztig automorphism of the $q$-Onsager algebra, J. Algebra 506 (2018), 56–75. MR 3800071, DOI 10.1016/j.jalgebra.2018.03.026
- W. Wang, Quantum symmetric pairs, Proceedings of ICM 2022, arXiv:2112.10911, 2021
- W. Wang and W. Zhang, An intrinsic approach to relative braid group symmetries on $\imath$quantum groups, Proc. London Math. Soc.(to appear), arXiv:2201.01803, 2022
- Weinan Zhang, A Drinfeld-type presentation of affine $\imath$quantum groups II: split BCFG type, Lett. Math. Phys. 112 (2022), no. 5, Paper No. 89, 33. MR 4482099, DOI 10.1007/s11005-022-01583-6
Bibliographic Information
- Ming Lu
- Affiliation: Department of Mathematics, Sichuan University, Chengdu 610064, People’s Republic of China
- Email: luming@scu.edu.cn
- Weiqiang Wang
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
- MR Author ID: 339426
- ORCID: 0000-0002-5553-9770
- Email: ww9c@virginia.edu
- Weinan Zhang
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
- MR Author ID: 1525177
- ORCID: 0000-0001-5893-1543
- Email: wz3nz@virginia.edu
- Received by editor(s): September 27, 2022
- Received by editor(s) in revised form: May 4, 2023, and July 1, 2023
- Published electronically: October 25, 2023
- Additional Notes: The first author was partially supported by the National Natural Science Foundation of China (No. 12171333). The second author was partially supported by the NSF grant DMS-2001351. The third author was supported by a GSAS fellowship at University of Virginia and the second author’s NSF Graduate Research Assistantship.
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 1000-1040
- MSC (2020): Primary 17B37
- DOI: https://doi.org/10.1090/ert/657
- MathSciNet review: 4659754