Classification of irreducible representations of metaplectic covers of the general linear group over a non-archimedean local field
HTML articles powered by AMS MathViewer
- by Eyal Kaplan, Erez Lapid and Jiandi Zou;
- Represent. Theory 27 (2023), 1041-1087
- DOI: https://doi.org/10.1090/ert/659
- Published electronically: November 3, 2023
- PDF | Request permission
Abstract:
Let $F$ be a non-archimedean local field and $r$ a non-negative integer. The classification of the irreducible representations of $GL_r(F)$ in terms of supercuspidal representations is one of the highlights of the Bernstein–Zelevinsky theory. We give an analogous classification for metaplectic coverings of $GL_r(F)$.References
- Dubravka Ban and Chris Jantzen, The Langlands quotient theorem for finite central extensions of $p$-adic groups, Glas. Mat. Ser. III 48(68) (2013), no. 2, 313–334. MR 3151110, DOI 10.3336/gm.48.2.07
- Dubravka Ban and Chris Jantzen, The Langlands quotient theorem for finite central extensions of $p$-adic groups II: intertwining operators and duality, Glas. Mat. Ser. III 51(71) (2016), no. 1, 153–163. MR 3516189, DOI 10.3336/gm.51.1.09
- William D. Banks, Jason Levy, and Mark R. Sepanski, Block-compatible metaplectic cocycles, J. Reine Angew. Math. 507 (1999), 131–163. MR 1670203, DOI 10.1515/crll.1999.011
- H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $p$-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050, DOI 10.1007/BF02792538
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 425030
- Jean-Luc Brylinski and Pierre Deligne, Central extensions of reductive groups by $\mathbf K_2$, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 5–85. MR 1896177, DOI 10.1007/s10240-001-8192-2
- Gautam Chinta and Omer Offen, A metaplectic Casselman-Shalika formula for $\textrm {GL}_r$, Amer. J. Math. 135 (2013), no. 2, 403–441. MR 3038716, DOI 10.1353/ajm.2013.0013
- Yuval Z. Flicker and David A. Kazhdan, Metaplectic correspondence, Inst. Hautes Études Sci. Publ. Math. 64 (1986), 53–110. MR 876160, DOI 10.1007/BF02699192
- Wee Teck Gan and Fan Gao, The Langlands-Weissman program for Brylinski-Deligne extensions, Astérisque 398 (2018), 187–275 (English, with English and French summaries). L-groups and the Langlands program for covering groups. MR 3802419
- Wee Teck Gan, Fan Gao, and Martin H. Weissman, L-groups and the Langlands program for covering groups: a historical introduction, Astérisque 398 (2018), 1–31 (English, with English and French summaries). L-groups and the Langlands program for covering groups. MR 3802417
- I. M. Gel′fand and V. A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite-dimensional space, Funkcional. Anal. i Priložen. 3 (1969), no. 4, 81–82 (Russian). MR 254068
- Shamgar Gurevich and Ronny Hadani, Quantization of symplectic vector spaces over finite fields, J. Symplectic Geom. 7 (2009), no. 4, 475–502. MR 2552002, DOI 10.4310/JSG.2009.v7.n4.a4
- Anthony C. Kable, The tensor product of exceptional representations on the general linear group, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 741–769 (English, with English and French summaries). MR 1862025, DOI 10.1016/S0012-9593(01)01075-8
- Masoud Kamgarpour and Teruji Thomas, Compatible intertwiners for representations of finite nilpotent groups, Represent. Theory 15 (2011), 407–432. MR 2801175, DOI 10.1090/S1088-4165-2011-00395-2
- Eyal Kaplan, Doubling constructions and tensor product ${L}$-functions: coverings of the symplectic group, arXiv:1902.00880 (2019).
- Eyal Kaplan and Dani Szpruch, A note on the representation theory of central extensions of reductive $p$-adic groups, Comm. Algebra 51 (2023), no. 10, 4363–4371. MR 4613279, DOI 10.1080/00927872.2023.2209647
- D. A. Kazhdan and S. J. Patterson, Corrections to: “Metaplectic forms” [Inst. Hautes Études Sci. Publ. Math. No. 59 (1984), 35–142; MR0743816 (85g:22033)], Inst. Hautes Études Sci. Publ. Math. 62 (1985), 419. MR 823178
- Tomio Kubota, Topological covering of $\textrm {SL}(2)$ over a local field, J. Math. Soc. Japan 19 (1967), 114–121. MR 204422, DOI 10.2969/jmsj/01910114
- Tomio Kubota, On automorphic functions and the reciprocity law in a number field, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2, Kinokuniya Book Store Co., Ltd., Tokyo, 1969. MR 255490
- Erez Lapid and Alberto Mínguez, On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), no. 4, 2347–2400. MR 3573961, DOI 10.1007/s00029-016-0281-7
- Wen-Wei Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 5, 787–859 (2013) (French, with English and French summaries). MR 3053009, DOI 10.24033/asens.2178
- Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62 (French). MR 240214, DOI 10.24033/asens.1174
- Paul Mezo, Metaplectic tensor products for irreducible representations, Pacific J. Math. 215 (2004), no. 1, 85–96. MR 2060495, DOI 10.2140/pjm.2004.215.85
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1971. MR 349811
- Alberto Mínguez, Sur l’irréductibilité d’une induite parabolique, J. Reine Angew. Math. 629 (2009), 107–131 (French, with English summary). MR 2527415, DOI 10.1515/CRELLE.2009.028
- Alberto Mínguez and Vincent Sécherre, Représentations banales de $\textrm {GL}_m(D)$, Compos. Math. 149 (2013), no. 4, 679–704 (French, with English summary). MR 3049700, DOI 10.1112/S0010437X12000590
- Alberto Mínguez and Vincent Sécherre, Représentations lisses modulo $\ell$ de $\mathrm {GL}_m({D})$, Duke Math. J. 163 (2014), no. 4, 795–887 (French, with English and French summaries). MR 3178433, DOI 10.1215/00127094-2430025
- C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995. Une paraphrase de l’Écriture [A paraphrase of Scripture]. MR 1361168, DOI 10.1017/CBO9780511470905
- Calvin C. Moore, Group extensions of $p$-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 157–222. MR 244258
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- G. I. Ol′šanskiĭ, Intertwining operators and complementary series in the class of representations of the full matrix group over a locally compact division algebra that are induced by parabolic subgroups, Mat. Sb. (N.S.) 93(135) (1974), 218–253, 326 (Russian). MR 499010
- David Renard, Représentations des groupes réductifs $p$-adiques, Cours Spécialisés [Specialized Courses], vol. 17, Société Mathématique de France, Paris, 2010 (French). MR 2567785
- Freydoon Shahidi, Twisted endoscopy and reducibility of induced representations for $p$-adic groups, Duke Math. J. 66 (1992), no. 1, 1–41. MR 1159430, DOI 10.1215/S0012-7094-92-06601-4
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, CT, 1968. Notes prepared by John Faulkner and Robert Wilson. MR 466335
- Shuichiro Takeda, Metaplectic tensor products for automorphic representation of $\widetilde {GL}(r)$, Canad. J. Math. 68 (2016), no. 1, 179–240. MR 3442519, DOI 10.4153/CJM-2014-046-2
- Shuichiro Takeda, Remarks on metaplectic tensor products for covers of $\textrm {GL}_r$, Pacific J. Math. 290 (2017), no. 1, 199–230. MR 3673084, DOI 10.2140/pjm.2017.290.199
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- André Weil, Basic number theory, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the second (1973) edition. MR 1344916
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Eyal Kaplan
- Affiliation: Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
- MR Author ID: 776117
- ORCID: 0000-0002-0727-8529
- Email: kaplaney@gmail.com
- Erez Lapid
- Affiliation: Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
- MR Author ID: 631395
- ORCID: 0000-0001-7204-6452
- Email: erez.m.lapid@gmail.com
- Jiandi Zou
- Affiliation: Mathematics Department, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- MR Author ID: 1522468
- ORCID: 0000-0001-8800-7466
- Email: idealzjd@gmail.com
- Received by editor(s): June 29, 2022
- Received by editor(s) in revised form: April 7, 2023, and July 24, 2023
- Published electronically: November 3, 2023
- Additional Notes: First named author was partially supported by the Israel Science Foundation (grant numbers 376/21 and 421/17).
Third named author was partially supported by the Israel Science Foundation (grant No. 737/20) - © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 1041-1087
- MSC (2020): Primary 22E50
- DOI: https://doi.org/10.1090/ert/659
- MathSciNet review: 4663361