Generic and mod $p$ Kazhdan-Lusztig Theory for $GL_2$
HTML articles powered by AMS MathViewer
- by Cédric Pepin and Tobias Schmidt;
- Represent. Theory 27 (2023), 1142-1193
- DOI: https://doi.org/10.1090/ert/656
- Published electronically: November 29, 2023
- HTML | PDF | Request permission
Abstract:
Let $F$ be a non-archimedean local field with residue field $\mathbb {F}_q$ and let $\mathbf {G}=GL_{2/F}$. Let $\mathbf {q}$ be an indeterminate and let $\mathcal {H}^{(1)}(\mathbf {q})$ be the generic pro-$p$ Iwahori-Hecke algebra of the $p$-adic group $\mathbf {G}(F)$. Let $V_{\mathbf {\widehat {G}}}$ be the Vinberg monoid of the dual group $\mathbf {\widehat {G}}$. We establish a generic version for $\mathcal {H}^{(1)}(\mathbf {q})$ of the Kazhdan-Lusztig-Ginzburg spherical representation, the Bernstein map and the Satake isomorphism. We define the flag variety for the monoid $V_{\mathbf {\widehat {G}}}$ and establish the characteristic map in its equivariant $K$-theory. These generic constructions recover the classical ones after the specialization $\mathbf {q}=q\in \mathbb {C}$. At $\mathbf {q}=q=0\in \overline {\mathbb {F}}_q$, the spherical map provides a dual parametrization of all the irreducible $\mathcal {H}^{(1)}_{\overline {\mathbb {F}}_q}(0)$-modules.References
- Laurent Berger, La correspondance de Langlands locale $p$-adique pour $\textrm {GL}_2(\textbf {Q}_p)$, Astérisque 339 (2011), Exp. No. 1017, viii, 157–180 (French, with French summary). Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026. MR 2906353
- C. Breuil, Representations of Galois and of $\operatorname {GL_2}$ in characteristic $p$, Cours at Columbia University, 2007, https://www.imo.universite-paris-saclay.fr/~breuil/PUBLICATIONS/New-York.pdf.
- Alexis Bouthier, Dimension des fibres de Springer affines pour les groupes, Transform. Groups 20 (2015), no. 3, 615–663 (French, with English and French summaries). MR 3376144, DOI 10.1007/s00031-015-9326-9
- A. Caraiani, M. Emerton, T. Gee, and D. Savitt, Moduli stacks of two-dimensional Galois representations, Preprint, arXiv:1908.07019, 2019.
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301 (French). MR 342522, DOI 10.1007/BF01418790
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697, DOI 10.24033/asens.1261
- Florian Herzig, A Satake isomorphism in characteristic $p$, Compos. Math. 147 (2011), no. 1, 263–283. MR 2771132, DOI 10.1112/S0010437X10004951
- Benedict H. Gross, On the Satake isomorphism, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 223–237. MR 1696481, DOI 10.1017/CBO9780511662010.006
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- Rachel Ollivier, Compatibility between Satake and Bernstein isomorphisms in characteristic $p$, Algebra Number Theory 8 (2014), no. 5, 1071–1111. MR 3263136, DOI 10.2140/ant.2014.8.1071
- C. Pepin and T. Schmidt́, On virtual quotients for actions of semigroups, Preprint, 2020, https://perso.univ-rennes1.fr/tobias.schmidt/virtual.pdf.
- C. Pépin, T. Schmidt, A semisimple mod $p$ Langlands correspondence in families for $GL_2(\mathbb {Q}_p)$, Preprint 2021, submitted for publication. arXiv:2009.07328v2.
- C. Pépin, T. Schmidt, Lubin-Tate moduli space of semisimple mod $p$ Galois representations for $GL_2$ and Hecke modules, Preprint 2023, submitted for publication. arXiv:2306.11863.
- Ichirô Satake, Theory of spherical functions on reductive algebraic groups over ${\mathfrak {p}}$-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 195863, DOI 10.1007/BF02684781
- Robert Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177. MR 372897, DOI 10.1016/0040-9383(75)90025-7
- Marie-France Vignéras, Representations modulo $p$ of the $p$-adic group $\textrm {GL}(2,F)$, Compos. Math. 140 (2004), no. 2, 333–358. MR 2027193, DOI 10.1112/S0010437X03000071
- Marie-France Vignéras, Pro-$p$-Iwahori Hecke ring and supersingular $\overline {\mathbf F}_p$-representations, Math. Ann. 331 (2005), no. 3, 523–556. MR 2122539, DOI 10.1007/s00208-004-0592-4
- Marie-France Vignéras, Algèbres de Hecke affines génériques, Represent. Theory 10 (2006), 1–20 (French, with French summary). MR 2192484, DOI 10.1090/S1088-4165-06-00185-3
- Marie-France Vignéras, The pro-$p$-Iwahori-Hecke algebra of a reductive $p$-adic group, II, Münster J. Math. 7 (2014), no. 1, 363–379. MR 3271250
- Marie-France Vignéras, The pro-$p$ Iwahori Hecke algebra of a reductive $p$-adic group, V (parabolic induction), Pacific J. Math. 279 (2015), no. 1-2, 499–529. MR 3437789, DOI 10.2140/pjm.2015.279.499
- Marie-France Vigneras, The pro-$p$-Iwahori Hecke algebra of a reductive $p$-adic group I, Compos. Math. 152 (2016), no. 4, 693–753. MR 3484112, DOI 10.1112/S0010437X15007666
- Marie-France Vigneras, The pro-$p$-Iwahori Hecke algebra of a reductive $p$-adic group III (spherical Hecke algebras and supersingular modules), J. Inst. Math. Jussieu 16 (2017), no. 3, 571–608. MR 3646282, DOI 10.1017/S1474748015000146
- E. B. Vinberg, On reductive algebraic semigroups, Lie groups and Lie algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 169, Amer. Math. Soc., Providence, RI, 1995, pp. 145–182. MR 1364458, DOI 10.1090/trans2/169/10
Bibliographic Information
- Cédric Pepin
- Affiliation: LAGA, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93 430 Villetaneuse, France
- ORCID: 0000-0002-3710-6744
- Email: cpepin@math.univ-paris13.fr
- Tobias Schmidt
- Affiliation: Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
- MR Author ID: 831459
- ORCID: 0000-0002-5645-3143
- Email: toschmidt@uni-wuppertal.de
- Received by editor(s): October 11, 2021
- Received by editor(s) in revised form: February 22, 2023
- Published electronically: November 29, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Represent. Theory 27 (2023), 1142-1193
- MSC (2020): Primary 11S37, 20C08
- DOI: https://doi.org/10.1090/ert/656
- MathSciNet review: 4672123