Character formulas in category $\mathcal {O}_p$
HTML articles powered by AMS MathViewer
- by Henning Haahr Andersen
- Represent. Theory 28 (2024), 1-19
- DOI: https://doi.org/10.1090/ert/664
- Published electronically: January 5, 2024
- HTML | PDF | Request permission
Abstract:
Let $\mathcal {O}_p$ denote the characteristic $p>0$ version of the ordinary category $\mathcal {O}$ for a semisimple complex Lie algebra. In this paper we give some (formal) character formulas in $\mathcal {O}_p$. First we concentrate on the irreducible characters. Here we give explicit formulas for how to obtain all irreducible characters from the characters of the finitely many restricted simple modules as well as the characters of a small number of infinite dimensional simple modules in $\mathcal {O}_p$ with specified highest weights. We next prove a strong linkage principle for Verma modules which allow us to split $\mathcal {O}_p$ into a finite direct sum of linkage classes. There are corresponding translation functors and we use these to further cut down the set of irreducible characters needed for determining all others. Then we show that the twisting functors on $\mathcal {O}$ carry over to twisting functors on $\mathcal {O}_p$, and as an application we prove a character sum formula for Jantzen-type filtrations of Verma modules with antidominant highest weights. Finally, we record formulas relating the characters of the two kinds of tilting modules in $\mathcal {O}_p$.References
- Pramod N. Achar, Shotaro Makisumi, Simon Riche, and Geordie Williamson, Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32 (2019), no. 1, 261–310. MR 3868004, DOI 10.1090/jams/905
- Henning Haahr Andersen, Filtrations of cohomology modules for Chevalley groups, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 4, 495–528 (1984). MR 740588, DOI 10.24033/asens.1458
- Henning Haahr Andersen, BGG categories in prime characteristics, Math. Z. 301 (2022), no. 2, 1481–1505. MR 4418327, DOI 10.1007/s00209-021-02962-w
- H. H. Andersen and N. Lauritzen, Twisted Verma modules, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 1–26. MR 1985191
- Henning Haahr Andersen and Catharina Stroppel, Twisting functors on $\scr O$, Represent. Theory 7 (2003), 681–699. MR 2032059, DOI 10.1090/S1088-4165-03-00189-4
- S. Arkhipov, A new construction of the semi-infinite BGG resolution, arXiv:q-alg/9605043, 1996.
- C. P. Bendel, D. K. Nakano, C. Pillen, and P. Sobaje, On Donkin’s Tilting Module Conjecture I: Lowering the Prime, arXiv:2103.14164.
- C. P. Bendel, D. K. Nakano, C. Pillen, and P. Sobaje, On Donkin’s Tilting Module Conjecture II: Counterexamples, arXiv:2107.11615.
- C. P. Bendel, D. K. Nakano, C. Pillen, and P. Sobaje, On Donkin’s Tilting Module Conjecture III: New generic lower bounds, arXiv:2209.04675.
- Vinay V. Deodhar, Ofer Gabber, and Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math. 45 (1982), no. 1, 92–116. MR 663417, DOI 10.1016/S0001-8708(82)80014-5
- J. P. Dixon, Some results concerning Verma modules, Thesis, University of London, 2008.
- Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39–60. MR 1200163, DOI 10.1007/BF02571640
- P. Fiebig, Periodicity of irreducible modular and quantum characters, arXiv:2102.09865, 2021.
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Simon Riche and Geordie Williamson, A simple character formula, Ann. H. Lebesgue 4 (2021), 503–535 (English, with English and French summaries). MR 4275245, DOI 10.5802/ahl.79
- Simon Riche and Geordie Williamson, Smith-Treumann theory and the linkage principle, Publ. Math. Inst. Hautes Études Sci. 136 (2022), 225–292. MR 4517647, DOI 10.1007/s10240-022-00134-y
- Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
Bibliographic Information
- Henning Haahr Andersen
- Affiliation: Centre for Quantum Mathematics (QM), Imada, SDU, Denmark
- MR Author ID: 25735
- ORCID: 0000-0002-9134-6271
- Email: h.haahr.andersen@gmail.com
- Received by editor(s): September 13, 2022
- Received by editor(s) in revised form: April 12, 2023, and September 7, 2023
- Published electronically: January 5, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Represent. Theory 28 (2024), 1-19
- MSC (2020): Primary 17B10, 17B35, 20G05
- DOI: https://doi.org/10.1090/ert/664
- MathSciNet review: 4685814