On input and Langlands parameters for epipelagic representations
HTML articles powered by AMS MathViewer
- by Beth Romano;
- Represent. Theory 28 (2024), 90-111
- DOI: https://doi.org/10.1090/ert/668
- Published electronically: February 12, 2024
- HTML | PDF
Abstract:
A paper of ReederโYu [J. Amer. Math. Soc. 27 (2014), pp. 437โ477] gives a construction of epipelagic supercuspidal representations of $p$-adic groups. The input for this construction is a pair $(\lambda , \chi )$ where $\lambda$ is a stable vector in a certain representation coming from a MoyโPrasad filtration, and $\chi$ is a character of the additive group of the residue field. We say two such pairs are equivalent if the resulting supercuspidal representations are isomorphic. In this paper we describe the equivalence classes of such pairs. As an application, we give a classification of the simple supercuspidal representations for split adjoint groups. Finally, under an assumption about unramified base change, we describe properties of the Langlands parameters associated to these simple supercuspidals, showing that they have trivial L-functions and minimal Swan conductors, and showing that each of these simple supercuspidals lies in a singleton L-packet.References
- Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld, Depth and the local Langlands correspondence, Arbeitstagung Bonn 2013, Progr. Math., vol. 319, Birkhรคuser/Springer, Cham, 2016, pp.ย 17โ41. MR 3618046, DOI 10.1007/978-3-319-43648-7_{2}
- Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld, The local Langlands correspondence for inner forms of $\mathrm {SL}_n$, Res. Math. Sci. 3 (2016), Paper No. 32, 34. MR 3579297, DOI 10.1186/s40687-016-0079-4
- Moshe Adrian, The Langlands parameter of a simple supercuspidal representation: odd orthogonal groups, J. Ramanujan Math. Soc. 31 (2016), no.ย 2, 195โ214. MR 3518182
- Moshe Adrian, Guy Henniart, Eyal Kaplan, and Masao Oi, Simple supercuspidal L-packets of split special orthogonal groups over dyadic fields, arXiv:2305.09076 (2023).
- Moshe Adrian and Eyal Kaplan, The Langlands parameter of a simple supercuspidal representation: symplectic groups, Ramanujan J. 50 (2019), no.ย 3, 589โ619. MR 4031300, DOI 10.1007/s11139-018-0060-5
- Moshe Adrian and Eyal Kaplan, On the Langlands parameter of a simple supercuspidal representation: even orthogonal groups, Israel J. Math. 246 (2021), no.ย 1, 459โ485. MR 4358290, DOI 10.1007/s11856-021-2259-1
- Anne-Marie Aubert, Sergio Mendes, Roger Plymen, and Maarten Solleveld, On $L$-packets and depth for $\textrm {SL}_2(K)$ and its inner form, Int. J. Number Theory 13 (2017), no.ย 10, 2545โ2568. MR 3713091, DOI 10.1142/S1793042117501421
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Anne-Marie Aubert and Yujie Xu, The explicit local Langlands correspondence for $G_2$, arXiv:2208.12391v2 (2022).
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR 1013112
- Jessica Fintzen, On the Moy-Prasad filtration, J. Eur. Math. Soc. (JEMS) 23 (2021), no.ย 12, 4009โ4063. MR 4321207, DOI 10.4171/jems/1098
- Jessica Fintzen, Types for tame $p$-adic groups, Ann. of Math. (2) 193 (2021), no.ย 1, 303โ346. MR 4199732, DOI 10.4007/annals.2021.193.1.4
- Benedict H. Gross and Mark Reeder, Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), no.ย 3, 431โ508. MR 2730575, DOI 10.1215/00127094-2010-043
- Wee Teck Gan and Gordan Savin, The local Langlands conjecture for $G_2$, Forum Math. Pi 11 (2023), Paper No. e28, 42. MR 4658199, DOI 10.1017/fmp.2023.27
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no.ย 2, 439โ455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Kaoru Hiraga, Atsushi Ichino, and Tamotsu Ikeda, Formal degrees and adjoint $\gamma$-factors, J. Amer. Math. Soc. 21 (2008), no.ย 1, 283โ304. MR 2350057, DOI 10.1090/S0894-0347-07-00567-X
- Guy Henniart and Masao Oi, Simple supercuspidal $L$-packets of symplectic groups over dyadic fields, arXiv:2207.12985v1 (2022).
- Kaoru Hiraga and Hiroshi Saito, On $L$-packets for inner forms of $SL_n$, Mem. Amer. Math. Soc. 215 (2012), no.ย 1013, vi+97. MR 2918491, DOI 10.1090/S0065-9266-2011-00642-8
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes รtudes Sci. Publ. Math. 25 (1965), 5โ48. MR 185016, DOI 10.1007/BF02684396
- Tasho Kaletha, Simple wild $L$-packets, J. Inst. Math. Jussieu 12 (2013), no.ย 1, 43โ75. MR 3001735, DOI 10.1017/S1474748012000631
- Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973โ1032. MR 114875, DOI 10.2307/2372999
- P. C. Kutzko, Mackeyโs theorem for nonunitary representations, Proc. Amer. Math. Soc. 64 (1977), no.ย 1, 173โ175. MR 442145, DOI 10.1090/S0002-9939-1977-0442145-3
- Allen Moy and Gopal Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no.ย 1โ3, 393โ408., DOI 10.1007/BF01231566
- Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal $K$-types, Comment. Math. Helv. 71 (1996), no.ย 1, 98โ121., DOI 10.1007/BF02566411
- David Mumford, Stability of projective varieties, Enseign. Math. (2) 23 (1977), no.ย 1-2, 39โ110. MR 450272
- Masao Oi, Endoscopic lifting of simple supercuspidal representations of $\textrm {SO}_{2n+1}$ to $\textrm {GL}_{2n}$, Amer. J. Math. 141 (2019), no.ย 1, 169โ217. MR 3904769, DOI 10.1353/ajm.2019.0004
- Masao Oi, Simple supercuspidal L-packets of quasi-split classical groups, arXiv:1805.01400v2 (2021).
- Dmitri I. Panyushev, On invariant theory of $\theta$-groups, J. Algebra 283 (2005), no.ย 2, 655โ670. MR 2111215, DOI 10.1016/j.jalgebra.2004.03.032
- Mark Reeder, Paul Levy, Jiu-Kang Yu, and Benedict H. Gross, Gradings of positive rank on simple Lie algebras, Transform. Groups 17 (2012), no.ย 4, 1123โ1190. MR 3000483, DOI 10.1007/s00031-012-9196-3
- Beth Romano, On the local Langlands correspondence: New examples from the epipelagic zone, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)โBoston College. MR 3517860
- Sean Rostami, On the canonical representatives of a finite Weyl group, arXiv:1505.07442v3 (2016).
- Mark Reeder and Jiu-Kang Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), no.ย 2, 437โ477. MR 3164986, DOI 10.1090/S0894-0347-2013-00780-8
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Stud., No. 70, Princeton Univ. Press, Princeton, NJ, 1971, pp.ย 77โ169 (French). MR 385006
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 450380, DOI 10.1007/978-1-4684-9458-7
- Shaun Stevens, The supercuspidal representations of $p$-adic classical groups, Invent. Math. 172 (2008), no.ย 2, 289โ352. MR 2390287, DOI 10.1007/s00222-007-0099-1
- J. Tits, Reductive groups over local fields, Proc. Sympos. Pure Math. 33 (1979), no.ย 1, 29โ69., DOI 10.1090/pspum/033.1/546588
- ร. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no.ย 3, 488โ526, 709 (Russian). MR 430168
- Jiu-Kang Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no.ย 3, 579โ622. MR 1824988, DOI 10.1090/S0894-0347-01-00363-0
Bibliographic Information
- Beth Romano
- Affiliation: Department of Mathematics, Kingโs College London, WC2R 2LS, United Kingdom
- MR Author ID: 1229203
- Email: beth.romano@kcl.ac.uk
- Received by editor(s): March 18, 2023
- Received by editor(s) in revised form: September 29, 2023, and December 5, 2023
- Published electronically: February 12, 2024
- © Copyright 2024 Copyright by the Authors
- Journal: Represent. Theory 28 (2024), 90-111
- MSC (2020): Primary 22E50, 11S37
- DOI: https://doi.org/10.1090/ert/668
- MathSciNet review: 4704423