Skip to Main Content

Representation Theory

Published by the American Mathematical Society since 1997, this electronic-only journal is devoted to research in representation theory and seeks to maintain a high standard for exposition as well as for mathematical content. All articles are freely available to all readers and with no publishing fees for authors.

ISSN 1088-4165

The 2020 MCQ for Representation Theory is 0.71.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On Noetherian algebras, Schur functors and Hemmer–Nakano dimensions
HTML articles powered by AMS MathViewer

by Tiago Cruz;
Represent. Theory 28 (2024), 189-274
DOI: https://doi.org/10.1090/ert/670
Published electronically: August 6, 2024

Abstract:

Important connections in representation theory arise from resolving a finite-dimensional algebra by an endomorphism algebra of a generator-cogenerator with finite global dimension; for instance, Auslander’s correspondence, classical Schur–Weyl duality and Soergel’s Struktursatz. Here, the module category of the resolution and the module category of the algebra being resolved are linked via an exact functor known as the Schur functor.

In this paper, we investigate how to measure the quality of the connection between module categories of (projective) Noetherian algebras, $B$, and module categories of endomorphism algebras of generator-relative cogenerators over $B$ which are split quasi-hereditary Noetherian algebras. In particular, we are interested in finding, if it exists, the highest degree $n$ so that the endomorphism algebra of a generator-cogenerator provides an $n$-faithful cover, in the sense of Rouquier, of $B$. The degree $n$ is known as the Hemmer–Nakano dimension of the standard modules.

We prove that, in general, the Hemmer–Nakano dimension of standard modules with respect to a Schur functor from a split highest weight category over a field to the module category of a finite-dimensional algebra $B$ is bounded above by the number of non-isomorphic simple modules of $B$.

We establish methods for reducing computations of Hemmer–Nakano dimensions in the integral setup to computations of Hemmer–Nakano dimensions over finite-dimensional algebras, and vice-versa. In addition, we extend the framework to study Hemmer–Nakano dimensions of arbitrary resolving subcategories. In this setup, we find that the relative dominant dimension over (projective) Noetherian algebras is an important tool in the computation of these degrees, extending the previous work of Fang and Koenig. In particular, this theory allows us to derive results for Schur algebras and the BGG category $\mathcal {O}$ in the integral setup from the finite-dimensional case. More precisely, we use the relative dominant dimension of Schur algebras to completely determine the Hemmer–Nakano dimension of standard modules with respect to Schur functors between module categories of Schur algebras over regular Noetherian rings and module categories of group algebras of symmetric groups over regular Noetherian rings.

We exhibit several structural properties of deformations of the blocks of the Bernstein-Gelfand-Gelfand category $\mathcal {O}$ establishing an integral version of Soergel’s Struktursatz. We show that deformations of the combinatorial Soergel’s functor have better homological properties than the classical one.

References
  • M. Auslander and D. A. Buchsbaum, On ramification theory in Noetherian rings, Amer. J. Math. 81 (1959), 749–765. \PrintDOI{10.2307/2372926}.
  • Susumu Ariki, Finite dimensional Hecke algebras, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 1–48. MR 2484723, DOI 10.4171/062-1/1
  • M. Auslander, Representation dimension of Artin algebras, Queen Mary College Mathematics Notes, Queen Mary College, London, 1971, 179 pp., with the assistance of Bernice Auslander.
  • I. N. Bernshteĭn, I. M. Gel’fand, and S. I. Gel’fand, Category of $\mathfrak g$ modules, Funct. Anal. Appl. 10 (1976), no. 2, 87–92. \PrintDOI{10.1007/BF01077933}.
  • Hongxing Chen, Ming Fang, Otto Kerner, Steffen Koenig, and Kunio Yamagata, Rigidity dimension of algebras, Math. Proc. Cambridge Philos. Soc. 170 (2021), no. 2, 417–443. MR 4222439, DOI 10.1017/S0305004119000513
  • E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165
  • E. Cline, B. Parshall, and L. Scott, Integral and graded quasi-hereditary algebras. I, J. Algebra 131 (1990), no. 1, 126–160. MR 1055002, DOI 10.1016/0021-8693(90)90169-O
  • E. Cline, B. Parshall, and L. Scott, Stratifying endomorphism algebras, vol. 591, American Mathematical Society (AMS), Providence, RI, 1996, \PrintDOI{10.1090/memo/0591}.
  • T. Cruz, Characteristic tilting modules and Ringel duality in the Noetherian world (2024). arXiv:2405.00729v1
  • T. Cruz, Algebraic analogues of resolution of singularities, quasi-hereditary covers and Schur algebras, Ph.D. Thesis, University of Stuttgart, 2021, \PrintDOI{10.18419/opus-11835}.
  • Tiago Cruz, A characterisation of Morita algebras in terms of covers, Algebr. Represent. Theory 25 (2022), no. 5, 1197–1206. MR 4483003, DOI 10.1007/s10468-021-10064-8
  • Tiago Cruz, An integral theory of dominant dimension of Noetherian algebras, J. Algebra 591 (2022), 410–499. MR 4337806, DOI 10.1016/j.jalgebra.2021.09.029
  • T. Cruz, Cellular Noetherian algebras with finite global dimension are split quasi-hereditary, J. Algebra Appl., 2023. \PrintDOI{10.1142/S0219498824501627}.
  • Stephen R. Doty, Karin Erdmann, and Daniel K. Nakano, Extensions of modules over Schur algebras, symmetric groups and Hecke algebras, Algebr. Represent. Theory 7 (2004), no. 1, 67–100. MR 2046956, DOI 10.1023/B:ALGE.0000019454.27331.59
  • R. Dipper and G. James, The q-Schur algebra, Proc. Lond. Math. Soc. (3) 59 (1989), no. 1, 23–50. \PrintDOI{10.1112/plms/s3-59.1.23}.
  • R. Dipper and G. James, $q$-Tensor space and $q$-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), no. 1, 251–282. \PrintDOI{10.2307/2001842}.
  • Yurij A. Drozd and Vladimir V. Kirichenko, Finite-dimensional algebras, Springer-Verlag, Berlin, 1994. Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab. MR 1284468, DOI 10.1007/978-3-642-76244-4
  • Stephen Donkin, On Schur algebras and related algebras. II, J. Algebra 111 (1987), no. 2, 354–364. MR 916172, DOI 10.1016/0021-8693(87)90222-5
  • S. Donkin, The $q$-Schur algebra, London Mathematical Society Lecture Note Series, vol. 253, Cambridge University Press, Cambridge, 1998, \PrintDOI{10.1017/CBO9780511600708}.
  • Vlastimil Dlab and Claus Michael Ringel, Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring, Proc. Amer. Math. Soc. 107 (1989), no. 1, 1–5. MR 943793, DOI 10.1090/S0002-9939-1989-0943793-2
  • V. Dlab and C. M. Ringel, The module theoretical approach to quasi-hereditary algebras, Representations of Algebras and Related Topics. Proceedings of the Tsukuba International Conference (Kyoto, Japan, 1990), pp. 200–224. Cambridge University Press, Cambridge, 1992. \PrintDOI{10.1017/cbo9780511661853.007}.
  • Karin Erdmann and Mark J. Wildon, Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006. MR 2218355, DOI 10.1007/1-84628-490-2
  • Alberto Facchini, Module theory, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1998. Endomorphism rings and direct sum decompositions in some classes of modules; [2012 reprint of the 1998 original] [MR1634015]. MR 3025306
  • M. Fang, Schur functors on QF-3 standardly stratified algebras, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 2, 311–318. \PrintDOI{10.1007/s10114-007-0984-y}.
  • M. Fang and S. Koenig, Schur functors and dominant dimension, Trans. Amer. Math. Soc. 363 (2011), no. 3, 1555–1576. \PrintDOI{10.1090/s0002-9947-2010-05177-3}.
  • M. Fang and H. Miyachi, Hochschild cohomology and dominant dimension, Trans. Amer. Math. Soc. 371 (2019), no. 8, 5267–5292, \PrintDOI{10.1090/tran/7704}.
  • G. Frobenius, Über die Charaktere der symmetrischen Gruppe, Königliche Gesellschaft der Wissenschaften, Göttingen, 1900, \PrintDOI{10.3931/e-rara-18862}.
  • O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. Éc. Norm. Supér. 14 (1981), no. 4, 261–302. \PrintDOI{10.24033/asens.1406}.
  • J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. \PrintDOI{10.1007/BF01232365}.
  • James A. Green, Polynomial representations of $\textrm {GL}_{n}$, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980) Lecture Notes in Math., vol. 848, Springer, Berlin, 1981, pp. 124–140. MR 613180
  • J. A. Green, Polynomial representations of $\textrm {GL}_{n}$, Second corrected and augmented edition, Lecture Notes in Mathematics, vol. 830, Springer, Berlin, 2007. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. MR 2349209
  • M. Hashimoto, Auslander-Buchweitz approximations of equivariant modules, vol. 282, Cambridge University Press, Cambridge, 2000, \PrintDOI{10.1017/cbo9780511565762}.
  • D. J. Hemmer and D. K. Nakano, Specht filtrations for Hecke algebras of type $A$, J. Lond. Math. Soc. II. Ser. 69 (2004), no. 3, 623–638. \PrintDOI{10.1112/s0024610704005186}.
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
  • O. Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011–1014. \PrintDOI{10.1090/S0002-9939-02-06616-9}.
  • Osamu Iyama, Representation dimension and Solomon zeta function, Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI, 2004, pp. 45–64. MR 2057149
  • G. D. James, The representation theory of the symmetric groups, vol. 682, Springer, Cham, 1978, \PrintDOI{10.1007/BFb0067708}.
  • A. S. Kleshchev and D. K. Nakano, On comparing the cohomology of general linear and symmetric groups, Pacific J. Math. 201 (2001), no. 2, 339–355. \PrintDOI{10.2140/pjm.2001.201.339}.
  • S. Koenig, I. H. Slungård, and C. Xi, Double centralizer properties, dominant dimension, and tilting modules, J. Algebra 240 (2001), no. 1, 393–412. \PrintDOI{10.1006/jabr.2000.8726}.
  • B. Le Stum and A. Quirós, On quantum state of numbers, arXiv:1310.8143, 2013.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
  • B. J. Mueller, The classification of algebras by dominant dimension, Canad. J. Math. 20 (1968), 398–409. \PrintDOI{10.4153/CJM-1968-037-9}.
  • Brian J. Parshall, Finite-dimensional algebras and algebraic groups, Classical groups and related topics (Beijing, 1987) Contemp. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1989, pp. 97–114. MR 982281, DOI 10.1090/conm/082/982281
  • B. Parshall and L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, Carlton Univ. Lect. Notes Math. 3 (1988), no. 3, 1–104.
  • B. J. Parshall and L. L. Scott, Quantum Weyl reciprocity for cohomology, Proc. Lond. Math. Soc. (3) 90 (2005), no. 3, 655–688. \PrintDOI{10.1112/S0024611504015047}.
  • B. Parshall and J. Wang, Quantum linear groups, vol. 439. American Mathematical Society (AMS), Providence, RI, 1991. \PrintDOI{10.1090/memo/0439}.
  • Idun Reiten, Tilting theory and homologically finite subcategories with applications to quasihereditary algebras, Handbook of tilting theory, London Math. Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 179–214. MR 2384611, DOI 10.1017/CBO9780511735134.008
  • Claus Michael Ringel, Iyama’s finiteness theorem via strongly quasi-hereditary algebras, J. Pure Appl. Algebra 214 (2010), no. 9, 1687–1692. MR 2593693, DOI 10.1016/j.jpaa.2009.12.012
  • J. J. Rotman, An introduction to homological algebra, 2nd ed., Springer, Berlin, 2009, \PrintDOI{10.1007/b98977}.
  • Raphaël Rouquier, $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), no. 1, 119–158, 184 (English, with English and Russian summaries). MR 2422270, DOI 10.17323/1609-4514-2008-8-1-119-158
  • I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, Diss. Berlin. 76 S., 1901, http://eudml.org/doc/203316.
  • Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
  • B. Totaro, Projective resolutions of representations of $\operatorname {GL}(n)$, J. Reine Angew. Math. 482 (1997), 1–13. \PrintDOI{10.1515/crll.1997.482.1}.
  • S. M. Woods, Some results on semi-perfect group rings, Canad. J. Math. 26 (1974), 121–129. \PrintDOI{10.4153/cjm-1974-013-x}.
  • Alexander Zimmermann, Representation theory, Algebra and Applications, vol. 19, Springer, Cham, 2014. A homological algebra point of view. MR 3289041, DOI 10.1007/978-3-319-07968-4
Similar Articles
  • Retrieve articles in Representation Theory of the American Mathematical Society with MSC (2020): 16G30, 16E30, 20G43, 17B10
  • Retrieve articles in all journals with MSC (2020): 16G30, 16E30, 20G43, 17B10
Bibliographic Information
  • Tiago Cruz
  • Affiliation: Institute of Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
  • MR Author ID: 1328604
  • ORCID: 0000-0002-3645-259X
  • Email: tiago.cruz@mathematik.uni-stuttgart.de
  • Received by editor(s): August 14, 2022
  • Received by editor(s) in revised form: November 2, 2023, February 1, 2024, and April 30, 2024
  • Published electronically: August 6, 2024
  • Additional Notes: This work was financially supported by Studienstiftung des Deutschen Volkes.
  • © Copyright 2024 American Mathematical Society
  • Journal: Represent. Theory 28 (2024), 189-274
  • MSC (2020): Primary 16G30, 16E30, 20G43, 17B10
  • DOI: https://doi.org/10.1090/ert/670
  • MathSciNet review: 4782328